Feuille d'exercices n°10

Exercices à traiter en priorité:

Exercices: 10; 6; 3; 2; 13; 15.

1. Somme directe de plusieurs sous-espaces

Exercice 1.

Soit $E = \mathbb{R}^4$. On considère (u_1, u_2, u_3, u_4) une famille libre de E et on pose

$$F = \text{vect}(u_1 + u_2, u_3), \ G = \text{vect}(u_1 + u_3, u_4), \ H = \text{vect}(u_1 + u_4, u_2).$$

Démontrer que $F \cap G = \{0\}$, que $F \cap H = \{0\}$ et que $G \cap H = \{0\}$. La somme F + G + H est-elle directe?

Exercice 2.

On considère le \mathbb{R} -espace vectoriel \mathbb{R}^4 muni de sa base canonique (e_1, e_2, e_3, e_4) . Soit

$$E = \{(x, y, z, t) \in \mathbb{R}^4: \ 2x + y + z - t = 0 \ \text{et} \ x + y + z = 0\}$$

et F = vect(v) où $v = e_1 + e_3$.

- 1. On pose $G_1 = \text{vect}(w_1)$ où $w_1 = e_1 + e_2$. La somme directe $E + F + G_1$ est-elle directe? Préciser la dimension de $E + F + G_1$.
- 2. On pose $G_2 = \text{vect}(w_2)$ où $w_2 = e_1 + e_2 + e_3$. La somme directe $E + F + G_2$ est-elle directe? Préciser la dimension de $E + F + G_2$.

2. Sous-espaces stables

Exercice 3.

Soit E un \mathbb{K} -espace vectoriel, et soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel F de E est stable par u si $u(x) \in F$ pour tout $x \in F$. Soit p un projecteur de E. Démontrer que u commute avec p si et seulement si $\mathrm{Im}(p)$ et $\mathrm{ker}(p)$ sont stables par u.

3. Matrices semblables

Exercice 4.

Montrer que les matrices A, B, C et D suivantes sont semblables :

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 5.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r.

- 1. Démontrer que A est semblable à une matrice par blocs $\begin{pmatrix} B & 0 \\ C & 0 \end{pmatrix}$ avec $B \in \mathcal{M}_r(\mathbb{K})$ et $C \in \mathcal{M}_{n-r,r}(\mathbb{K})$.
- 2. On suppose de plus que Im(A) et $\ker(A)$ sont supplémentaires. Démontrer que l'on peut demander C=0. Que dire de B ?

Exercice 6.

Soit $M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. Le but de l'exercice est de démontrer que M

et D sont semblables. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est M.

- 1. Démontrer qu'il existe $u_1 \in \mathbb{R}^3$ tel que $\text{vect}(u_1) = \text{ker}(f Id)$. De même, prouver l'existence de $u_2, u_{-4} \in \mathbb{R}^3$ tels que $\text{vect}(u_2) = \text{ker}(f 2Id)$ et $\text{Vect}(u_{-4}) = \text{ker}(f + 4Id)$.
- 2. Démontrer que (u_1, u_2, u_{-4}) est une base de \mathbb{R}^3 .
- 3. Conclure.

Exercice 7.

- 1. Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que f est une homothétie si et seulement si, pour tout $x \in E$, la famille (x, f(x)) est liée.
- 2. Soit $M \in M_n(\mathbb{K})$ de trace nulle. Montrer que M est semblable à une matrice n'ayant que des zéros sur la diagonale.

4. Eléments propres et polynôme caractéristique

Exercice 8.

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ et D l'endomorphisme de E qui à f associe f'. Déterminer les valeurs propres de D et les sous-espaces propres associés.

Exercice 9.

Soit $E = \mathbb{C}^{\mathbb{N}}$ l'espace des suites à coefficients complexes, et ϕ l'endomorphisme de E qui à une suite (u_n) associe la suite (v_n) définie par $v_0 = u_0$ et pour tout $n \geq 1$,

$$v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer les valeurs propres et les vecteurs propres de ϕ .

Exercice 10.

Déterminer les éléments propres des matrices suivantes :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

Exercice 11.

Soit $E = \mathbb{R}_n[X]$ et soit ϕ l'endomorphisme de E défini par $\phi(P) = P - (X+1)P'$. Donner les éléments propres de ϕ .

Exercice 12.

Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto {}^tM$. Déterminer les valeurs propres de ϕ .

Exercice 13.

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si ses coefficients sont des réels positifs ou nuls et si la somme des coefficients de chacune de ses lignes est égale à 1.

- 1. Démontrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $|\lambda| \leq 1$.
- 2. Démontrer que 1 est valeur propre et donner un vecteur propre associé.

Exercice 14.

1. Soient $M, N \in \mathcal{M}_n(\mathbb{C})$. Démontrer que MN est inversible si et seulement si M et N sont inversibles.

2. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Démontrer que

$$\chi_A(B) \in GL_n(\mathbb{C}) \iff \operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \varnothing.$$

Exercice 15.

Soit $A \in GL_n(\mathbb{C})$. On note P le polynôme caractéristique de A et Q celui de A^{-1} . Quelle relation a-t-on pour tout $\lambda \in \mathbb{C}^*$ entre $Q(\lambda)$ et $P(\lambda^{-1})$?

Exercice 16.

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On souhaite prouver que $\chi_{AB} = \chi_{BA}$.

- 1. Démontrer le résultat si ${\cal A}$ ou ${\cal B}$ est inversible.
- 2. Dans le cas général, on considère les matrices de $\mathcal{M}_{2n}(\mathbb{K})$

$$M = \left(\begin{array}{cc} BA & -B \\ 0 & 0 \end{array} \right), \ N = \left(\begin{array}{cc} 0 & -B \\ 0 & AB \end{array} \right), \ P = \left(\begin{array}{cc} I_n & 0 \\ A & I_n \end{array} \right).$$

Vérifier que PN = MP et conclure.