Chapitre VI

Réduction des endomorphismes et des matrices carrées

Table des matières

Partie A : Rappels et compléments d'algèbre linéaire	2
1. Somme finie de sous-espaces vectoriels	2
2. Matrices semblables	
3. Sous-espaces stables et endomorphismes induits	
Partie B : Éléments propres	4
1. Éléments propres d'un endomorphisme	4
2. Propriétés des sous-espaces propres	
3. Éléments propres d'une matrice carrée	
Partie C : Polynôme caractéristique 2	7
1. Polynôme caractéristique	7
2. Ordre de multiplicité d'une valeur propre	
Partie D : Diagonalisation et trigonalisation 3	6
1. Endomorphismes et matrices diagonalisables	6
2. Diagonalisation	
3. Endomorphismes et matrices trigonalisables	
4. Trigonalisation	
5. Endomorphismes nilpotents et matrices nilpotentes	

Dans ce chapitre, n désigne un entier naturel non nul et E désigne un espace vectoriel sur $\mathbb K$ où $\mathbb K$ est un sous-corps de \mathbb{C} . On se limitera dans les manipulations au cas $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Partie A

Rappels et compléments d'algèbre linéaire

1. Somme finie de sous-espaces vectoriels

Dans ce paragraphe, on généralise la notion de somme de deux sous-espaces vectoriels vue en Sup' au cas d'un nombre fini de sous-espaces.

Définition 1. Somme finie de sous-espaces vectoriels

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E. On appelle **somme de** $F_1, ..., F_m$ et on note $F_1 + \ldots + F_m$ ou encore $\sum F_i$, le sous-ensemble de E :

$$\sum_{i=1}^{m} F_i = \left\{ \sum_{i=1}^{m} x_i \mid \forall \ i \in [1, m], \ x_i \in F_i \right\}.$$

Proposition 1.

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E. Alors

$$\sum_{i=1}^{m} F_i = \text{Vect}\left(\bigcup_{i=1}^{m} F_i\right).$$

En particulier, $\sum_{i=1}^{\infty} F_i$ est un sous-espace vectoriel de E.

On pose $F = \sum_{i=1}^m F_i$ et $U = \bigcup_{i=1}^m F_i$. Montrons tout d'abord que F est un sous-espace vectoriel de E:

On a $F \subset E$ car pour tout $i \in [1, m]$ et pour tout $x_i \in F_i \subset E$, E étant stable par combinaisons

linéaires, $x_1 + ... + x_m \in E$.

— On a $0_E = \sum_{i=1}^m \underbrace{0_E}_{\in F_i} \in F$ car pour chaque $i \in [\![1,m]\!]$, F_i est un sous-espace vectoriel de

E et donc contient 0_E .

Soit $\lambda, \mu \in \mathbb{K}$ et $x = x_1 + \ldots + x_m, y = y_1 + \ldots + y_m \in F$ avec, pour tout $i \in [1, m]$,

 $x_i, y_i \in F_i$. On a:

$$\lambda x + \mu y = \sum_{i=1}^{m} \underbrace{(\lambda x_i + \mu y_i)}_{\in F_i} \in F$$

car pour chaque $i \in [1, m]$, F_i est un sous-espace vectoriel de E et donc est stable par combinaisons linéaires.

Par suite, F est un sous-espace vectoriel de E. On pouvait également montrer que F est un sous-espace de E comme l'image directe du sous-espace vectoriel $F_1 \times ... \times F_m$ de E^m par l'application linéaire $f: (x_1, ..., x_m) \mapsto x_1 + ... + x_m$ de E^m dans E.

 $\text{Montrons que } F = \text{Vect}(U). \text{ Soit } x \in U. \text{ Alors il existe } j \in \llbracket 1, m \rrbracket \text{ tel que } x \in F_j. \text{ Pour chaque } i \in \llbracket 1, m \rrbracket, \text{ on pose } y_i = \begin{cases} 0_E & \text{ si } i \neq j \\ x & \text{ si } i = j \end{cases}. \text{ Alors, pour tout } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i \text{ et donc } i \in \llbracket 1, m \rrbracket, \, y_i \in F_i$

$$x = \sum_{i=1}^{m} y_i \in F$$

Par suite, $U \subset F$.

Maintenant, soit G un sous-espace vectoriel de E contenant U. Soit $x = x_1 + ... + x_m \in F$ avec, pour tout $i \in [\![1,m]\!]$, $x_i \in F_i$. Comme, pour tout $i \in [\![1,m]\!]$, $x_i \in U \subset G$ et G est stable par combinaisons linéaires, $x \in G$. Par suite, $F \subset G$.

Ainsi, F est le plus petit sous-espace vectoriel de E contenant U i.e. F = Vect(U).

Corollaire 1.

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E. Si pour chaque $i \in [1, m, \mathcal{F}_i]$ est une famille génératrice de F_i , alors la famille \mathcal{F} obtenue en concaténant (i.e. en mettant bout-à-bout) les familles $\mathcal{F}_1, ..., \mathcal{F}_m$, est une famille génératrice de la somme $F_1 + ... + F_m$.

Démonstration.

Comme tout élément de \mathcal{F} appartient à $U = \bigcup_{i=1}^m F_i$, on a $\operatorname{Vect}(\mathcal{F}) \subset \operatorname{Vect}(U) = F_1 + \ldots + F_m$. Pour l'inclusion réciproque, on remarque que pour tout $i \in [\![1,m]\!]$, tout élément de F_i est combinaison linéaire d'éléments de la famille \mathcal{F}_i et donc de la famille \mathcal{F} . Par suite, $U \subset \operatorname{Vect}(\mathcal{F})$ qui est un sous-espace vectoriel de E. Or $\operatorname{Vect}(U)$ est le plus petit sous-espace vectoriel contenant U donc $F_1 + \ldots + F_m = \operatorname{Vect}(U) \subset \operatorname{Vect}(\mathcal{F})$.

Par suite, \mathcal{F} est une famille génératrice de la somme.

Définition 2. Sous-espaces vectoriels en somme directe

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E.

On dit que $F_1, ..., F_m$ sont en **somme directe** si, pour tout $y \in \sum_{i=1}^m F_i$:

il existe un **unique** m-uplet $(x_1,...,x_m) \in F_1 \times ... \times F_m$ tel que $y = x_1 + ... + x_m$; autrement dit, y se décompose de manière unique sous la forme $y = x_1 + ... + x_m$ avec, pour tout $i \in [1, m]$, $x_i \in F_i$.

Dans ce cas, la somme $\sum_{i=1}^{m} F_i$ est appelée somme directe de $F_1, ..., F_m$ et on note $\bigoplus_{i=1}^{m} F_i =$

$$\sum_{i=1}^{m} F_i \text{ ou encore } F_1 \oplus \ldots \oplus F_m = \sum_{i=1}^{m} F_i.$$

Proposition 2.

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E. Les assertions suivantes sont équivalentes :

- i) $F_1, ..., F_m$ sont en somme directe;
- ii) pour tout $y=x_1+\ldots+x_m\in\sum_{i=1}^mF_i$ avec, pour tout $i\in[\![1,m]\!],\,x_i\in F_i:$ $y=0_E$ implique, pour tout $i\in[\![1,m]\!],\,x_i=0_E.$
- iii) pour tout $i \in [1, m]$, $\left(\sum_{\substack{j=1\\j \neq i}}^m F_j\right) \cap F_i = \{0_E\}.$
- iv) pour tout $i \in [2, m]$, $(F_1 + ... + F_{i-1}) \cap F_i = \{0_E\}$.

Démonstration.

- i) \Rightarrow ii) On suppose i). Soit $y = x_1 + ... + x_m \in \sum_{i=1}^m F_i$ avec, pour tout $i \in [\![1,m]\!], x_i \in F_i$. On suppose $y = 0_E$. Comme les F_i sont des sous-espaces vectoriels de E et donc contiennent 0_E , celui-ci admet la décomposition $y = 0_E = \sum_{i=1}^m \underbrace{0_E}_{\in F_i}$ dans la somme $F_1 + ... + F_m$. La somme étant directe, par unicité de la décomposition de y dans la somme, on a, pour tout $i \in [\![1,m]\!], x_i = 0_E$.
- ii) \Rightarrow iii) On suppose ii). Soit $i \in [1, m]$. On pose $F = \sum_{\substack{j=1 \ j \neq i}}^m F_j$. Soit $x \in F \cap F_i$. Comme $x \in F$, pour tout $j \in [1, m]$ avec $j \neq i$, il existe $x_j \in F_j$ tels que $x = \sum_{\substack{j=1 \ j \neq i}}^m x_j$. On pose $x_i = -x \in F_i$. Alors on a :

$$\sum_{j=1}^{m} x_j = x_i + \sum_{\substack{j=1\\j \neq i}}^{m} x_j = -x + x = 0_E$$

Ainsi, par hypothèse, pour tout $j \in [1, m]$, $x_j = 0_E$. En particulier, on a $x = -x_i = -0_E = 0_E$. Par suite, $F \cap F_j = \{0_E\}$.

iii) \Rightarrow iv) On suppose iii). Soit $i \in [2, m]$. Alors $F_1 + ... + F_{i-1} \subset F = \sum_{\substack{j=1 \ j \neq i}}^m F_j$ et donc $(F_1 + ... + F_{i-1}) \cap F_i \subset F \cap F_i = \{0_E\}$. Par suite, $(F_1 + ... + F_{i-1}) \cap F_i = \{0_E\}$.

iv) \Rightarrow i) On suppose iv). Soit $y \in \sum_{i=1}^m F_i$ et $y = x_1 + \ldots + x_m, \ y = x_1' + \ldots + x_m'$ des décompositions de z dans la somme $\sum_{i=1}^m F_i$ où, pour tout $i \in [\![1,m]\!], \ x_i, x_i' \in F_i$. On a $0_E = y - y = \sum_{i=1}^m (x_i - x_i')$ donc, les F_i étant des sous-espaces vectoriels de E et ainsi étant stables par combinaisons linéaires, $x_m' - x_m \in F_m$ et

$$x'_m - x_m = \sum_{i=1}^{m-1} \underbrace{(x_i - x'_i)}_{F_i} \in F_1 + \dots + F_{m-1}$$

Donc $x_m'-x_m\in (F_1+\ldots+F_{m-1})\cap F_m=\{0_E\}$ par hypothèse. Par suite $x_m'=x_m$. On réitère le même raisonnement de proche en proche pour $i=m-1,\ldots,2$ pour obtenir $x_i'=x_i$. Puis pour i=1, on arrive alors à $x_1-x_1'=0_E$ d'où $x_1'=x_1$. Il en résulte que la décomposition de y dans la somme $F_1+\ldots+F_m$ est unique.

Exemple 1.

— Dans $\mathbb{R}[X]$, les sous-espaces $F_i = \text{Vect}(X^i)$ pour $i = 0, ..., m \in \mathbb{N}^*$ sont en somme directe et

$$\bigoplus_{i=0}^{m} F_i = \mathbb{R}_m[X].$$

— On considère $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et pour $I \subset \mathbb{R}$, on note $F_I = \{f \in E \mid \forall x \notin I, f(x) = 0\}$ exercice : montrer que F_I est un sous-espace vectoriel de E. Alors les sous-espaces vectoriels $F_{]-\infty,0]}$, $F_{[1,8]}$, et $F_{[33,100]}$ sont en somme directe et

$$F_{]-\infty,0]} \oplus F_{[1,8]}) \oplus F_{[33,100]} = F_{]-\infty,0] \cup [1,8] \cup [33,100]}.$$

On a $F_{]-\infty,0]} \cap F_{[1,8]} = \{\mathbf{0}\}$ car si une fonction f appartient à cette intersection, elle est nulle en dehors de $]-\infty,0]$ et en dehors de [1,8] qui sont des intervalles disjoints.

De plus, on a $F_{]-\infty,0]} + F_{[1,8]} = F_{]-\infty,0] \cup [1,8]}$. En effet, si $f = f_1 + f_2 \in F_{]-\infty,0]} + F_{[1,8]}$, alors, pour tout $x \notin]-\infty,0] \cup [1,8]$, f(x) = 0 car $x \notin]-\infty,0]$, d'où $f_1(x) = 0$ et $x \notin [1,8]$, d'où $f_2(x) = 0$. Ainsi, $F_{]-\infty,0]} + F_{[1,8]} \subset F_{]-\infty,0] \cup [1,8]}$. Et si $f \in F_{]-\infty,0] \cup [1,8]}$, on pose :

$$f_1: x \mapsto \begin{cases} f(x) & \text{si } x \in]-\infty, 0] \\ 0 & \text{sinon} \end{cases}$$
 et $f_2: x \mapsto \begin{cases} f(x) & \text{si } x \in [1, 8] \\ 0 & \text{sinon} \end{cases}$

Alors $f_1 \in F_{]-\infty,0]}$ et $f_2 \in F_{[1,8]}$ et $]-\infty,0]$ et [1,8] étant disjoints, $f=f_1+f_2 \in F_{]-\infty,0]}+F_{[1,8]}$. Ainsi $F_{]-\infty,0]\cup[1,8]} \subset F_{]-\infty,0]}+F_{[1,8]}$.

Maintenant, comme] $-\infty,0] \cup [1,8]$ et [33,100] sont disjoints, comme précédemment, on a :

$$(F_{]-\infty,0]}+F_{[1,8]})\cap F_{[33,100]}=F_{]-\infty,0]\cup [1,8]}\cap F_{[33,100]}=\{\mathbf{0}\}$$

Il en résulte que $F_{]-\infty,0]},\,F_{[1,8]},$ et $F_{[33,100]}$ sont en somme directe.

Exercice 1.

On note:

- $S_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) \mid {}^t\!M = M \}$ (ensemble des matrices symétriques) et
- $A_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) \mid {}^t M = -M \}$ (ensemble des matrices antisymétriques).

Montrer que $M_n(\mathbb{R}) = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.

Exercice 2.

On considère la matrice $M=\begin{pmatrix}0&2&-1\\3&1&-3\\2&2&-3\end{pmatrix}$ et $f\in\mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement

associé à ${\cal M}.$

Montrer que les sous-espaces vectoriels $Ker(f-Id_E)$, $Ker(f+Id_E)$, $Ker(f+2Id_E)$ sont en somme directe et déterminer leur somme.

Correction.

On note \mathcal{B} la base canonique de \mathbb{R}^3 . Alors $M = \operatorname{Mat}_{\mathcal{B}}(f)$. On pose $F_1 = \operatorname{Ker}(f - \operatorname{Id}_E)$, $F_2 = \operatorname{Ker}(f + \operatorname{Id}_E)$, $F_3 = \operatorname{Ker}(f + 2\operatorname{Id}_E)$.

Soit $x = x_1 + x_2 + x_3 \in F_1 + F_2 + F_3$ avec $x_i \in F_i$. Alors on a :

$$f(x_1) = x_1;$$
 $f(x_2) = -x_2$ et $f(x_3) = -2x_3.$

et donc,

$$f^2(x_1) = x_1;$$
 $f^2(x_2) = x_2$ et $f^2(x_3) = 4x_3.$

Supposons $x = 0_{\mathbb{R}^3}$. Alors, par linéarité de f, $f(x) = 0_E = f^2(x)$. Par suite, on a le système :

$$\begin{cases} x_1 + x_2 + x_3 = 0_E \\ x_1 + -x_2 + -2x_3 = 0_E \\ x_1 + x_2 + 4x_3 = 0_E \end{cases}$$

On le résout pour trouver $x_1 = x_2 = x_3 = 0_E$. Par suite, les sous-espaces sont en somme directe. On peut remarquer qu'on n'a jamais utilisé la matrice M... nous y verrons plus clair dans la suite du chapitre!

Remarque 1.

Attention! On peut montrer que si $F_1, ..., F_m$ sont en somme directe, alors, pour tous $i, j \in [1, m]$ avec $i \neq j$, $F_i \cap F_j = \{0_E\}$. Mais la réciproque est fausse comme on peut s'en apercevoir dans l'exercice suivant :

Exercice 3.

On considère l'espace vectoriel \mathbb{R}^2 . Soit F = Vect((1,0)), G = Vect((0,1)) et H = Vect((1,1)).

1. Déterminer F + G + H.

- 2. (a) Déterminer les intersections deux à deux entre F, G et H.
 - (b) La somme F + G + H est-elle directe?
 - (c) Que dire de la dernière affirmation de la remarque précédente.
- 3. Montrer la première affirmation de la remarque i.e. si $F_1, ..., F_m$ sont en somme directe, alors, pour tous $i, j \in [1, m]$ avec $i \neq j$, $F_i \cap F_j = \{0_E\}$.

Correction.

1. Soit $(x,y) \in \mathbb{R}^2$. On a :

$$(x,y) = x(1,0) + y(0,1) + 0(1,1) \in F + G + H$$

donc $\mathbb{R}^2 \subset F + G + H$. L'inclusion réciproque est vraie car F + G + H est un sous-espace vectoriel de \mathbb{R}^2 .

Par suite, $F + G + H = \mathbb{R}^2$.

- 2. (a) Si $u \in F \cap G$, alors il existe $\lambda, v \in \mathbb{R}$ tels que $u = (\lambda, 0)$ et u = (0, v) d'où $\lambda = 0$ et v = 0. Par suite u = (0, 0). Ainsi, $F \cap G = \{(0, 0)\}$. Par des raisonnements similaires, on trouve $G \cap H = \{(0, 0)\} = H \cap F$.
 - (b) La somme F+G+H n'est pas directe car (1,1) admet dans F+G+H les décompositions (1,1)=0(1,0)+0(0,1)+1(1,1) et (1,1)=1(1,0)+1(0,1)+0(1,1) qui sont différentes.
 - (c) Les intersections deux à deux des facteurs de la somme sont toutes réduites à 0_E mais la somme n'est pas directe. La réciproque de l'implication énoncée dans la remarque précédente est donc fausse, comme annoncé!
- 3. On suppose $F_1, ..., F_m$ en somme directe. Soit $i, j \in \llbracket 1, m \rrbracket$ avec $i \neq j$. Quitte à les échanger, on peut supposer j < i. D'après le iv) de la proposition 2, on a $(F_1 + ... + F_{i-1}) \cap F_i = \{0_E\}$ Or, comme j < i, on a $F_j \subset F_1 + ... + F_{i-1}$ donc $F_j \cap F_i \subset (F_1 + ... + F_{i-1}) \cap F_i = \{0_E\}$, d'où $F_j \cap F_i = \{0_E\}$.

Grâce à l'unicité de la décomposition dans une somme directe, on peut définir les applications qui, à un vecteur de la somme, associent chaque composante de sa décomposition :

Définition 3. Projecteurs associés à une somme directe

Soit $m \in \mathbb{N}^*$ et $F_1, ..., F_m$ des sous-espaces vectoriels de E en somme directe tels que $E = \bigoplus_{i=1}^m F_i$.

On appelle projecteurs associés à la décomposition en somme directe $E = \bigoplus_{i=1}^{n} F_i$ les applications $p_1, ..., p_m$ où, pour tout $i \in [1, m]$,

pour
$$x = x_1 + ... + x_m \in E$$
 avec, pour tout $j \in [1, m], x_j \in F_i$, $p_i(x) = x_i$.

Proposition 3.

Soit $m \in \mathbb{N}^*$, $F_1, ..., F_m$ des sous-espaces vectoriels de E en somme directe, tels que $E = \bigoplus_{i=1}^m F_i$ et $p_1, ..., p_m$ les projecteurs associés. Alors :

- pour tout $i \in [1, m]$, p_i est un projecteur; plus précisément, p_i est la projection sur F_i parallèlement à $\bigoplus_{j=1 \atop i \neq i} F_j$.
- $p_1 + ... + p_n = \text{Id}_E$ et, pour tout $i, j \in [1, m]$ avec $i \neq j, p_i \circ p_j = \mathbf{0}$.

Proposition 4.

Soit $m \in \mathbb{N}^*$, $F_1, ..., F_m$ des sous-espaces vectoriels de E. On a :

$$\dim\left(\sum_{i=1}^{m} F_i\right) \le \sum_{i=1}^{m} \dim\left(F_i\right).$$

Et il y a égalité si, et seulement si, la somme est directe.

Démonstration

On considère l'application linéaire f de $F_1 \times ... \times F_m$ dans $F_1 + ... + F_m$ tel que $f: (x_1, ..., x_m) \mapsto x_1 + ... + x_m$.

Par définition de la somme, f est surjective, donc :

$$\dim \left(\sum_{i=1}^{m} F_i\right) \leq \dim \left(F_1 \times \dots \times F_m\right) = \sum_{i=1}^{m} \dim \left(F_i\right).$$

De plus, comme f est surjective, il y a égalité si, et seulement si, f est injective d'après le théorème du rang (on est bien en dimension finie ici, car cet énoncé n'a aucun intérêt en dimension infinie!).

Or, f étant linéaire, f est injective si, et seulement si, pour tout $x=(x_1,...,x_m)\in F_1\times...\times F_m$, $x_1+...+x_m=f(x)=0_E$ implique $x=(0_E,...,0_E)$ i.e. pour tout $i\in [\![1,m]\!]$, $x_i=0_E$; d'après la proposition 2, ceci est équivalent à $F_1,...,F_m$ sont en somme directe.

Définition-Proposition 4.

Base adaptée à une somme directe

Soit $m \in \mathbb{N}^*$, $F_1, ..., F_m$ des sous-espaces vectoriels de E en somme directe.

Si, pour chaque $i \in [1, m]$, \mathcal{B}_i une base de F_i , alors la famille \mathcal{B} obtenue en concaténant (i.e. en mettant bout-à-bout) les bases $\mathcal{B}_1, ..., \mathcal{B}_m$, est une base $F_1 \oplus ... \oplus F_m$.

Une telle base \mathcal{B} est appelée base adpatée à la somme directe $F_1 \oplus ... \oplus F_m$.

Démonstration.

Soit \mathcal{B} la famille obtenue en concatenant $\mathcal{B}_1, ..., \mathcal{B}_m$. Montrons que \mathcal{B} est une famille libre et génératrice de $F_1 \oplus ... \oplus F_m$.

Pour $i \in [1, m]$, on note $(e_{i,j})_{j \in J_i}$ la base \mathcal{B}_i de F_i . On note $I = \bigcup_{i=1}^m (\{i\} \times J_i)$ et on a :

$$\mathcal{B} = (e_{i,j})_{(i,j) \in I}.$$

— <u>Liberté</u>: Soit $(\lambda_{i,j})_{(i,j)\in I}$ une famille de scalaires presque tous nuls. On suppose $\sum_{(i,j)\in I} \lambda_{i,j} e_{i,j} = 0_E$. Pour $i \in [\![1,m]\!]$, on note $x_i = \sum_{j\in J_i} \lambda_{i,j} e_{i,j} \in F_i$. Alors on a:

$$\sum_{i=1}^{m} x_i = \sum_{(i,j) \in I} \lambda_{i,j} e_{i,j} = 0_E.$$

Les F_i étant en somme directe, on obtient, pour tout $i \in [1, m]$, $\sum_{j \in J_i} \lambda_{i,j} e_{i,j} = x_i = 0_E$; or, $\mathcal{B}_i = (e_{i,j})_{j \in J_i}$ est une base de F_i et donc une famille libre, donc, pour tout $j \in J_i$, $\lambda_{i,j} = 0$.

Ainsi, pour tout $(i, j) \in I$, $\lambda_{i,j} = 0$, d'où \mathcal{B} est une famille libre.

— <u>Génération</u>: Soit $x \in F_1 \oplus ... \oplus F_m$. Alors, pour tout $i \in [1, m]$, il existe $x_i \in F_i$ tels que $x = x_1 + ... + x_m$.

Or, pour tout $i \in [1, m]$, comme $\mathcal{B}_i = (e_{i,j})_{j \in J_i}$ est une base de F_i , il existe une famille $(\lambda_{i,j})_{j \in J_i}$ une famille de scalaires presque tous nuls telle que :

$$x_i = \sum_{j \in J_i} \lambda_{i,j} e_{i,j}.$$

Par suite, la famille $(\lambda_{i,j})_{(i,j)\in I}$ est une famille de scalaire presque tous nuls comme concaténation de m familles de scalaires presque tous nuls et on a :

$$x = \sum_{i=1}^{m} x_i$$

$$= \sum_{i=1}^{m} \sum_{j \in J_i} \lambda_{i,j} e_{i,j}$$

$$x = \sum_{(i,j) \in I} \lambda_{i,j} e_{i,j}$$

d'où x est combinaison linéaire d'éléments de la famille \mathcal{B} . Ainsi, la famille \mathcal{B} est génératrice de $F_1 \oplus ... \oplus F_m$.

Il en résulte que \mathcal{B} est une base de $F_1 \oplus ... \oplus F_m$ comme famille libre et génératrice de $F_1 \oplus ... \oplus F_m$.

2. Matrices semblables

a. Matrices équivalentes

Définition 5. Matrices équivalentes

Soit $A, B \in M_n(\mathbb{K})$. On dit que A et B sont **équivalentes** s'il existe $P, Q \in GL_n(\mathbb{K})$ tels que $B = Q^{-1}AP$.

Exercice 4.

Montrer que la relation "être équivalentes" est une relation d'équivalence sur $M_n(\mathbb{K})$.

Proposition 5.

Soit $A \in M_n(\mathbb{K})$. Alors $\operatorname{rg}(A) = r \in [0, n]$ si, et seulement si, A est équivalente à la matrice

$$\begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$$

b. Matrices semblables

Définition 6. Matrices semblables

Soit $A, B \in M_n(\mathbb{K})$. On dit que A et B sont **semblables** s'il existe $P \in GL_n(\mathbb{K})$ tels que

$$B = P^{-1}AP.$$

Exemple 2.

Soit \mathcal{B} et \mathcal{B}' des bases de E et $u \in \mathcal{L}(E)$. On note $M = \operatorname{Mat}_{\mathcal{B}}(u)$ la matrice de u dans la base \mathcal{B} et $M' = \operatorname{Mat}_{\mathcal{B}'}(u)$ la matrice de u dans la base \mathcal{B}' . Alors M et M' sont semblables; en effet, on a

$$M' = P^{-1}MP$$

où P est la matrice de passage de \mathcal{B} vers \mathcal{B}' .

Remarque 2.

- Deux matrices A et B qui sont semblables ont le même déterminant.
- Deux matrices A et B qui sont semblables ont la même trace. En vertu de cette remarque et de l'exemple ci-dessus, cela permet de définir la trace d'un endomorphisme : la trace d'un endomorphisme est la trace d'une matrice de cet endomorphisme dans une base quelconque.

3. Sous-espaces stables et endomorphismes induits

Définition 7. Sous-espace stable

Soit F un sous-espace vectoriel de E et $u \in \mathcal{L}(E)$. On dit que F est **stable** par u si $u(F) \subset F$, i.e. pour tout $x \in F$, $u(x) \in F$.

Exemple 3.

- Les sous-espaces vectoriels $\{0\}$ et E sont stables par tout endomorphisme de E.
- Une homothétie (i.e. $\lambda \operatorname{Id}_E$ où $\lambda \in \mathbb{K}$) stabilise tous les sous-espaces vectoriels de E.
- Une intersection ou une somme de sous-espaces stables par un endomorphisme u est un sous-espace stable par u.

Exercice 5.

- 1. Soit $u \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, la famille (x, u(x)) est liée. Montrer que u est une homothétie.
- 2. En déduire que les seuls endomorphismes qui stabilisent tous les sous-espaces vectoriels de E sont les homothéties.

Correction

- 1. On suppose que, pour tout $x \in E$, (x, u(x)) est liée. Alors, pour tout $x \neq 0_E$, il existe un unique $\lambda_x \in \mathbb{K}$ tel que $u(x) = \lambda_x x$. Montrons que, pour tous $x, y \in E$ non nuls, $\lambda_x = \lambda_y$.
 - 1er cas : x et y sont colinéaires. Alors il existe $\mu \in \mathbb{K}$ tel que $x = \mu y$, d'où :

$$\lambda_x x = u(x) = \mu u(y) = \mu \lambda_y y = \lambda_y x;$$

donc $\lambda_x = \lambda_y$.

— 2nd cas: (x,y) est libre. Alors on a

$$\lambda_{x+y}(x+y) = u(x+y) = u(x) + u(y) = \lambda_x x + \lambda_y y.$$

Par suite,

$$(\lambda_{x+y} - \lambda_x)x + (\lambda_{x+y} - \lambda_y)y = 0_E,$$

or (x,y) est libre donc $\lambda_{x+y} - \lambda_x = 0$ et $\lambda_{x+y} - \lambda_y = 0$. Et donc $\lambda_x = \lambda x + y = \lambda_y$. Il en résulte qu'il existe $\lambda \in \mathbb{K}$ tel que, pour tout $x \in E$, $u(x) = \lambda x$ (cette égalité étant trivialement vraie pour $x = 0_E$). Ainsi $u = \lambda \operatorname{Id}_E$ est une homothétie.

2. Une homothétie stabilise tous les sous-espaces vectoriels. Réciproquement, si u est un endomorphisme qui stabilise tous les sous-espaces vectoriels, alors, pour tout $x \in E$, u stabilise $\mathbb{K}x = \mathrm{Vect}(x)$. Ainsi, pour tout $x \in E$, $u(x) \in \mathbb{K}x$ i.e. (x, u(x)) est liée. Par suite, d'après la question précédente, u est une homothétie.

Proposition 6.

Soit F un sous-espace vectoriel de E, $(e_i)_{i\in I}$ une famille génératrice de F et $u\in\mathcal{L}(E)$. Alors F est stable par u si, et seulement si, pour tout $i\in I$, $u(e_i)\in F$.

Démonstration.

- (\Rightarrow). On suppose F stable par u. Alors pour tout $x \in F$, $u(x) \in F$, donc en particulier, comme chaque $e_i \in F$ pour $i \in I$, $u(e_i) \in F$.
- (\Leftarrow). On suppose que pour tout $i \in I$, $u(e_i) \in F$. Soit $x \in F$. Comme $(e_i)_{i \in I}$ est génératrice, alors il existe une famille $(\lambda_i)_{i \in I}$ presque tous nuls telle que $x = \sum_{i \in I} \lambda_i e_i$. Par suite, on a :

$$u(x) = \sum_{i \in I} \lambda_i \underbrace{u(e_i)}_{\in F},$$

donc, comme F est un sous-espace vectoriel, $u(x) \in F$. Il en résulte que F est stable par u.

Remarque 3.

Pour $x \in E$, $\mathbb{K}x$ est un sous-espace vectoriel de E. D'après la proposition précédente, ce sous-espace est stable par u si, et seulement si, il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.

Proposition 7.

Soit $u, v \in \mathcal{L}(E)$. Si u et v commutent i.e. $u \circ v = v \circ u$, alors $\mathrm{Ker}(v)$ et $\mathrm{Im}(v)$ sont stables par u.

Démonstration.

On suppose que u et v commutent.

• Soit $x \in \text{Ker}(v)$. Montrons que $u(x) \in \text{Ker}(v)$. On a :

$$v(u(x)) = v \circ u(x) = u \circ v(x) = u(v(x)) = u(0_E) = 0_E$$

car $v \circ u = u \circ v$ et u est linéaire. Par suite, Ker(v) est stable par u.

• Soit $v(x) \in \text{Im}(v)$ où $x \in E$. Montrons que $u(v(x)) \in \text{Im}(v)$. On a :

$$u(v(x)) = u \circ v(x) = v \circ u(x) = v(u(x)) \in \operatorname{Im}(v)$$

car $u \circ v = v \circ u$ et $u(x) \in E$. Par suite $\operatorname{Im}(v)$ est stable par u.

Définition 8. Endomorphisme induit

Soit F un sous-espace vectoriel de E stable par un endomorphisme u de E. On appelle **endomorphisme induit par** u **sur** F et l'endomorphisme $u_F \in \mathcal{L}(F)$ défini par $u_F = u_{|F|}$ i.e. pour tout $x \in F$

$$u_F(x) = u(x)$$

Proposition 8.

On suppose E de dimension finie n. Soit u un endomorphisme de F un sous-espace vectoriel de E de dimension p et $\mathcal{B} = (e_1, ..., e_n)$ une **base adaptée** à F i.e. $\mathcal{B}' = (e_1, ..., e_p)$ est une base de F.

Alors F est stable par u si, et seulement si, la matrice $M = \operatorname{Mat}_{\mathcal{B}}(u)$ dans la base \mathcal{B} est triangulaire supérieure par bloc, i.e.

$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right)$$

avec $A \in M_p(\mathbb{K})$.

Dans ce cas, A est la matrice $\operatorname{Mat}_{\mathcal{B}'}(u_F)$ de l'endomorphisme induit u_F par u sur F.

Démonstration.

On note $M = (m_{ij})_{1 \le i,j \le n} = \text{Mat}_{\mathcal{B}}(u)$. Alors on a, pour $i \in [1,n]$, $u(e_i) = \sum_{j=1}^n m_{ij}e_i$. On note : $A = (m_{ij})_{1 \le i,j \le p}$, $B = (m_{ij})_{\substack{p+1 \le j \le n \\ 1 \le i \le p}}$, $C = (m_{ij})_{\substack{p+1 \le i,j \le n \\ 1 \le i \le n}}$ et $D = (m_{ij})_{\substack{1 \le j \le p \\ p+1 \le i \le n}}$.

On remarque que $(e_1,...,e_p)$ est en particulier une famille génératrice de F.

Ainsi,

F est stable par u

si, et seulement si,

pour tout $j \in [1, p]$, $u(e_j) = \sum_{i=1}^n m_{ij} e_i \in F$

si, et seulement si,

pour tout $j \in [1, p]$ et $i \in [p + 1, n]$, $m_{ij} = 0$

si, et seulement si,

$$D = (0)_{\substack{1 \le j \le p \\ p+1 \le i \le n}}$$

si, et seulement si,

$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right)$$

Partie B

Éléments propres

1. Éléments propres d'un endomorphisme

a. Définitions

Définition 9. Valeur/vecteur propre d'un endomorphisme

Soit $u \in \mathcal{L}(E)$.

— On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe $x \in E$ non nul tel que

$$u(x) = \lambda x$$
.

— Soit $\lambda \in \mathbb{K}$ une valeur propre de u. On dit que $x \in E$ est un vecteur propre de u associé à λ si :

$$x \neq 0_E$$
 et $u(x) = \lambda x$.

Proposition 9.

Soit $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$ et $x \in E \setminus \{0_E\}$.

— Le scalaire λ est une valeur propre de u si, et seulement si, $\operatorname{Ker}(u - \lambda \operatorname{Id}_E) \neq \{0_E\}$ - autrement dit, si, et seulement si, $u - \lambda \operatorname{Id}_E$ n'est pas injectif.

— Le vecteur x est un vecteur propre de u si, et seulement si, u(x) est colinéaire à x.

Démonstration.

•

 λ est une valeur propre de u

 \sin , et seulement \sin ,

il existe $x \in E \setminus \{0_E\}$ tel que $u(x) = \lambda x$

si, et seulement si,

il existe $x \in E \setminus \{0_E\}$ tel que $u - \lambda \mathrm{Id}_E(x) = 0_E$

si, et seulement si,

il existe $x \in E \setminus \{0_E\}$ tel que $x \in \text{Ker}(u - \lambda \text{Id}_E)(x)$

si, et seulement si,

 $\operatorname{Ker}(u - \lambda \operatorname{Id}_E)(x) \neq \{0_E\}.$

•

x est un vecteur propre de u

si, et seulement si,

il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$

si, et seulement si,

Exercice 6.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f: (x, y, z) \to (2y, 2x, 2z)$. Montrer que (1, 1, 0), (0, 0, 1) et (1, -1, 0) sont des vecteurs propres de f. À quelle valeur propre chacun d'entre eux est-il associé?

Démonstration.

On a:

$$f(1,1,0) = (2,2,0) = 2(1,1,0)$$

$$f(0,0,1) = (0,0,1) = 2(0,0,1)$$

$$f(1,-1,0) = (-2,2,0) = (-2)(1,-1,0)$$

Donc (1,1,0) et (0,0,1) sont des vecteurs propres de f associés à la valeur propre 2 et (1,-1,0) est un vecteur propre de f associé à la valeur propre -2.

Définition 10. Sous-espace propre d'un endomorphisme

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Si λ est une valeur propre de u, on appelle **sous-espace propre** de u associé à la valeur propre λ le sous-espace vectoriel de E noté $E_{\lambda}(u)$ et défini par :

$$E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E}) = \{x \in E \mid u(x) = \lambda x\}.$$

Autrement dit, $E_{\lambda}(u)$ est l'ensemble contenant 0_E et l'ensemble des vecteurs propres associés à la valeur propre λ .

Définition 11.) Spectre d'un endomorphisme

On suppose que E est de **dimension finie**. Soit $u \in \mathcal{L}(E)$. Le **spectre** de u, noté $\mathrm{Sp}(u)$, est l'ensemble des valeurs propres de u i.e.

$$\operatorname{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \exists x \in E \setminus \{0_E\}, \ u(x) = \lambda x \}.$$

Remarque 4.

- le vecteur nul 0_E n'est JAMAIS un vecteur propre! Par contre, il appartient à tout sous-espace propre.
- 0 est valeur propre de u si, et seulement si, u n'est pas injectif. Dans ce cas, on a :

$$E_0(u) = \operatorname{Ker}(u)$$

Exercice 7.

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On suppose que λ est une valeur propre de u.

- 1. On suppose que $\lambda \neq 0$. Montrer que $E_{\lambda}(u) \subset \text{Im}(u)$.
- 2. On suppose u bijectif. Montrer que $\lambda \neq 0$ et que $\frac{1}{\lambda}$ est une valeur propre de u^{-1} . Que dire de $E_{\frac{1}{\lambda}}(u^{-1})$?

Correction.

1. Soit $x \in E_{\lambda}(u)$. Alors $u(x) = \lambda x$ et donc, par linéarité de u,

$$x = u(\frac{1}{\lambda}x) \in \text{Im}(f).$$

Par suite, $E_{\lambda}(u) \subset \operatorname{Im}(u)$.

2. Comme Ker $(u) = \{0_E\}$, 0 n'est pas valeur propre de u. Par suite, $\lambda \neq 0$. Soit $x \in E_{\lambda}(u)$. Alors $u(x) = \lambda x$ et donc, par linéarité de u^{-1} , $x = u^{-1}(u(x)) = \lambda u^{-1}(x)$. Par suite, on a :

$$u^{-1}(x) = \frac{1}{\lambda}x,$$

Or, λ étant valeur propre de u, il existe $x \in E_{\lambda}(u) \setminus \{0_E\}$ et donc, d'après ce qui précède, $\frac{1}{\lambda}$ est une valeur propre de u^{-1} et x est un vecteur propre de u^{-1} associé à $\frac{1}{\lambda}$. Ainsi, $E_{\lambda}(u) \subset E_{\frac{1}{\lambda}}(u^{-1})$. Et réciproquement, si $x \in E_{\frac{1}{\lambda}}(u^{-1})$, par un raisonnement similaire, on obtient $u(x) = \lambda x$. Il en résulte que

$$E_{\frac{1}{\lambda}}(u^{-1}) = E_{\lambda}(u).$$

b. Exemples

On applique les transformations suivantes à la première image. Déterminons les valeurs propres et leurs directions propres associées pour chacune des transformations. Une direction propre correspond à une direction qui reste inchangée après transformation et une valeur propre correspond à l'échelle de la modification (en tenant compte du changement de sens grâce au signe) après transformation dans la direction propre qui lui est associée.

Symétrie

Dilatation

Exemple 4.

- Soit $\lambda \in \mathbb{K}$. Alors l'homothétie $\lambda \mathrm{Id}_E$ admet λ pour unique valeur propre et $E_{\lambda}(\lambda \mathrm{Id}_E) = E$.
- Une rotation non triviale (i.e. d'angle différent d'un multiple de π) dans le plan euclidien n'admet pas de valeur propre.
- Soit $p \in \mathcal{L}(E)$ un projecteur non trivial de E i.e. $p^2 = p$ et $p \neq 0$, Id_E . Alors p admet pour valeurs propres 0 et 1 et on a :

$$E_0(p) = \operatorname{Ker}(p)$$
 et $E_1(p) = \operatorname{Im}(p)$

Si λ est une valeur propre de p, alors pour x un vecteur propre de p associé à λ , on a :

$$\lambda^2 x = p^2(x) = p(x) = \lambda x.$$

Comme $x \neq 0_E$, on en déduit que $\lambda = 0$ ou $\lambda = 1$.

Montrons que 0 et 1 sont bien valeurs propres de p:

— Comme $p \neq \mathbf{0}$, il existe $x \in E$ tel que $p(x) \neq 0_E$. Ainsi, pour $y = p(x) \neq 0_E$, on a :

$$p(y) = p(p(x)) = p(x) = y = 1.y$$
 car $p^2 = p$

Donc, y étant un vecteur non nul, 1 est bien valeur propre de p.

— Comme $p \neq \text{Id}_E$, il existe $x \in E$ tel que $p(x) \neq x$. Ainsi, pour $y = p(x) - x \neq 0_E$, on a, par linéarité de p:

$$p(y) = p(p(x)) - p(x) = 0_E = 0.y$$
 car $p^2 = p$

Donc, y étant un vecteur non nul, 0 est bien valeur propre de p.

Déterminons désormais les sous-espaces propres associés à 0 et 1 :

- $\lambda = 0$. Pour tout endomorphisme qui admet 0 pour valeur propre, le sousespace propre associé à 0 est égal à son noyau, donc $E_0(p) = \text{Ker}(u)$.
- $\lambda = 1$. Pour tout endomorphisme u qui admet $\lambda \neq 0$ pour valeur propre, $E_{\lambda}(u) \subset \operatorname{Im}(u)$. Par suite, $E_{1}(p) \subset \operatorname{Im}(p)$.

Réciproquement, pour $y = p(x) \in \text{Im}(p)$ avec $x \in E$, on a :

$$p(y) = p(p(x)) = p^{2}(x) = p(x) = y.$$

d'où $y \in E_1(p)$.

Par suite, $\operatorname{Im}(p) \subset E_1(p)$.

Il en résulte que $E_1(p) = \text{Im}(p)$.

— Soit F, G deux sous-espaces supplémentaires non triviaux. La symétrie s par rapport à F parallèlement à G admet pour valeur propre 1 et -1 et et on a :

$$E_1(s) = F$$
 et $E_{-1}(s) = G$

Soit p le projecteur sur F parallèlement à G. Alors on a $s=2p-\mathrm{Id}_E$, donc, pour $\lambda\in\mathbb{K}$ et $x\in E$,

$$s(x) = \lambda x \iff p(x) = \frac{1+\lambda}{2} x.$$

Par suite, comme p est non trivial, d'après l'exemple précédent, s admet 1 et -1 pour valeurs propres et

$$E_1(s) = E_1(p) = \text{Ker}(p) = F$$

et

$$E_{-1}(s) = E_0(p) = \text{Im}(p) = G.$$

— Soit $f \in \mathcal{L}(\mathbb{R}^2)$ tel que $f : (x,y) \mapsto (2x,x+y)$. Alors $\operatorname{Sp}(f) = \{2,1\}$; et $E_2(f) = \operatorname{Vect}((1,1))$ et $E_1(f) = \operatorname{Vect}((0,1))$.

On a, pour $\lambda \in \mathbb{K}$:

$$(*) \ f(x,y) = \lambda(x,y) \Leftrightarrow \left\{ \begin{array}{cccc} 2x & = & \lambda x \\ x & + & y & = & \lambda y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{cccc} (2-\lambda)x & = & 0 \\ x & + & (1-\lambda)y & = & 0 \end{array} \right.$$

 $1er\ cas: \lambda \neq 2$ et $\lambda \neq 1.$ Alors (*) est équivalent à

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

Donc, dans ce cas, (x,y)=(0,0) est la seule solution de $f(x,y)=\lambda(x,y)$ donc λ n'est pas valeur propre de f.

2eme cas : $\lambda = 2$. Alors

$$(*) \Leftrightarrow \{ x - y = 0 \}$$

Donc, dans ce cas, l'ensemble des solutions de f(x,y)=2(x,y) est $\{(x,y)\mid x-y=0\}=\mathrm{Vect}((1,1))\neq\{0_E\}$ donc $\lambda=2$ est valeur propre de f et $E_2(f)=\mathrm{Vect}((1,1))$.

2eme cas : $\lambda = 2$. Alors

$$(*) \Leftrightarrow \{ x = 0 \}$$

Donc, dans ce cas, l'ensemble des solutions de f(x,y) = (x,y) est $\{(x,y) \mid x=0\} = \text{Vect}((0,1)) \neq \{0_E\}$ donc $\lambda = 1$ est valeur propre de f et $E_1(f) = \text{Vect}((0,1))$.

— Soit $E = C^{\infty}(\mathbb{R})$ et $D \in \mathcal{L}(E)$ tel que $D : f \mapsto f'$. Alors pour tout $\lambda \in \mathbb{R}$, λ est une valeur propre et $x \mapsto e^{\lambda x}$ est un vecteur propre associé à λ .

Soit $\lambda \in \mathbb{R}$. Pour $f \in E$, on a $f \in \operatorname{Ker}(u - \lambda \operatorname{Id}_E)$ si, et seulement si, $f' - \lambda f = 0$, c'est à dire, f est solution de l'équation différentielle homogène $y' - \lambda y = 0$. Cette équation à pour ensemble de solution $\{x \mapsto C.e^{\lambda x} \mid C \in \mathbb{R}\} \neq \{\mathbf{0}\}$; donc λ est une valeur propre de D et on a :

$$E_{\lambda}(D) = \{x \mapsto C.e^{\lambda x} \mid C \in \mathbb{R}\} = \mathbb{R}.f$$

où f est le vecteur propre de D associé à λ défini par $f: x \mapsto e^{\lambda x}$.

Exercice 8.

Ques dire des valeurs propres...

- 1. de l'endomorphisme nul $\mathbf{0}$? de l'identité Id_E ?
- 2. d'une rotation dans \mathbb{R}^3 ?
- 3. de l'application $\Delta: P \to P'$ de $\mathbb{R}[X]$ dans lui-même?

Correction.

- 1. Pour tout $x \in E \setminus \{0_E\}$, on a $0_E = 0(x) = \lambda x$ si, et seulement si, $\lambda = 0$, donc λ est la seule valeur propre de 0 et $E_0(0) = E$.
 - Pour tout $x \in E \setminus \{0_E\}$, on a $x \operatorname{Id}_E = \lambda x$ si, et seulement si, $\lambda = 1$, donc λ est la seule valeur propre de Id_E et $E_1(\operatorname{Id}_E) = E$.
- 2. Une rotation de \mathbb{R}^3 (d'angle différent d'un multiple de π) n'admet qu'une seule valeur propre. Il s'agit de la valeur propre 1 dont le sous-espace propre associé est l'axe de la rotation.
- 3. Pour $\lambda \in \mathbb{K}^*$, $P' = \lambda P$ implique $\deg(P) = \deg(P') = \deg(P) 1$. Ainsi P = 0 est la seule solution de $P = \lambda P'$, donc si $\lambda \neq 0$, λ n'est pas une valeur propre de Δ . Pour $\lambda = 0$, P' = 0 a pour solutions les polynômes constants. Ainsi, 0 est la seule valeur propre de Δ et $E_0(\Delta) = \operatorname{Ker}(\Delta) = P = a_0 \mid a_0 \in \mathbb{K}$.

2. Propriétés des sous-espaces propres

Proposition 10.

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Si λ est valeur propre de u alors $E_{\lambda}(u)$ est un sous-espace vectoriel de E et

$$\dim (E_{\lambda}(u)) \geq 1.$$

Correction.

On suppose que λ est une valeur propre de u. Alors $E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_E)$ est un sous-espace vectoriel de E comme noyau d'une application linéaire d'espace de départ E. De plus, par définition de λ valeur propre, il existe $x \in E \setminus \{0_E\}$ tel que $u(x) = \lambda x$. Alors x appartient à $E_{\lambda}(u)$ qui est un sous-espace vectoriel donc $\operatorname{Vect}(x) \subset E_{\lambda}(u)$ car $\operatorname{Vect}(x)$ est le plus petit sous-espace vectoriel de E contenant x. Or $\dim(\operatorname{Vect}(x)) = 1$ car $x \neq 0_E$, d'où :

$$\dim (E_{\lambda}(u)) \ge \dim(\operatorname{Vect}(x)) \ge 1.$$

Proposition 11.

Soit $u, v \in \mathcal{L}(E)$. Si u et v commutent, i.e. $u \circ v = v \circ u$ alors les sous-espaces propres de u sont stables par v et les sous-espaces propres de v sont stables par u.

Démonstration

On suppose que u et v commutent. Comme u commute avec Id_E , alors, pour tout $\lambda \in \mathbb{K}$, u commute avec $v-\mathrm{Id}_E$. Ainsi, d'après la proposition 7, $\mathrm{Ker}(v-\lambda\mathrm{Id}_E)$ est stable par u. Par suite, si $\lambda \in \mathbb{K}$ est une valeur propre de u, $E_{\lambda}(v) = \mathrm{Ker}(v-\lambda\mathrm{Id}_E)$ est stable par u.

On raisonne de même pour la stabilité par v des sous-espaces propres de u.

Proposition 12.

Soit $u \in \mathcal{L}(E)$ et $\lambda, \mu \in \mathbb{K}$. Si λ, μ sont des valeurs propres distinctes de u, alors $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont en somme directe i.e.

$$E_{\lambda}(u) \cap E_{\mu}(u) = \{0_E\}.$$

Démonstration.

On suppose que λ, μ sont des valeurs propres de u qui vérifient $\lambda \neq \mu$. Soit $x \in E_{\lambda}(u) \cap E_{\mu}(u)$. Alors on a :

$$u(x) = \lambda x$$
 et $u(x) = \mu x$.

Par suite, par linéarité de u

$$(\lambda - \mu)x = \lambda x - \mu x = u(x) - u(x) = u(x - x) = u(0_E) = 0_E$$

Or $\lambda - \mu \neq 0$ donc $x = 0_E$ par l'axiomatique d'un espace vectoriel.

Ainsi $E_{\lambda}(u) \cap E_{\mu}(u) \subset \{0_E\}$ et donc $E_{\lambda}(u) \cap E_{\mu}(u) = \{0_E\}$.

Corollaire 2.

Soit $u \in \mathcal{L}(E)$ et $\lambda, \mu \in \mathbb{K}$. Si λ, μ sont des valeurs propres distinctes de u, alors, pour tous vecteurs propres x et y associés à λ et μ respectivement, la famille (x, y) est libre.

Démonstration

On suppose $\lambda \neq \mu$. Soit $x \in E_{\lambda}(u) \setminus \{0_E\}$ et $y \in E_{\lambda}(u) \setminus \{0_E\}$. D'après la proposition précédente, $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont en somme directe, donc (x, y) est libre.

Exercice : Soit F, G des sous-espaces vectoriels de E tels que F et G sont en somme directe. Montrer que toute famille (x, y) avec $x \in F \setminus \{0_E\}$ et $y \in G \setminus \{0_E\}$ est libre. \square

Proposition 13.

Soit $u \in \mathcal{L}(E)$, $k \in \mathbb{N}^*$ et $\lambda_1, ..., \lambda_k \in \mathbb{K}$. Si $\lambda_1, ..., \lambda_k$ des valeurs propres de u toutes distinctes, alors les sous-espaces propres associés $E_{\lambda_1}(u), ..., E_{\lambda_k}(u)$ sont en somme directe.

Démonstration

Montrons, par récurrence sur $\mathbb{N} \setminus \{0,1\}$, que pour tout $k \in \mathbb{N} \setminus \{0,1\}$, la propriété \mathcal{P}_k ="pour k-uplets $(\lambda_1,...,\lambda_k)$ de valeurs propres distinctes de u, les sous-espaces propres associés sont en somme directe".

L'initialisation k=2 est donnée par la proposition préccédente.

Hérédité: Soit k un entier plus grand que 2. On suppose \mathcal{P}_k vraie.

Soit $\lambda_1, ..., \lambda_{k+1}$ des valeurs propres distinctes de u. Soit $x = x_1 + ... + x_{k+1} \in \sum_{i=1}^{k+1} E_{\lambda_i}(u)$ où, pour tout $i \in [1, k+1]$, $x_i \in E_{\lambda_i}(u)$. On suppose $x = 0_E$. Alors, par linéarité de u, on a d'une

part $u(x) = 0_E$ et d'autre part :

$$u(x) = \sum_{i=1}^{k+1} u(x_i) = \sum_{i=1}^{k+1} \lambda_i x_i.$$

Par suite, on a:

$$0_E = u(x) - \lambda_{k+1} x = \sum_{i=1}^k (\lambda_i - \lambda_{k+1}) x_i.$$

Or, pour tout $i \in [1, k]$, $E_{\lambda_i}(u)$ étant un sous-espace vectoriel, $(\lambda_i - \lambda_{k+1})x_i \in E_{\lambda_i}(u)$.

Ainsi, $\sum_{i=1}^{k} (\lambda_i - \lambda_{k+1}) x_i$ appartient à la somme $\bigoplus_{i=1}^{k} E_{\lambda_i}(u)$ qui est bien directe par hypothèse de récurrence. Ainsi, comme $\sum_{i=1}^{k} (\lambda_i - \lambda_{k+1}) x_i = 0_E$, on a pour tout $i \in [1, k]$, $(\lambda_i - \lambda_{k+1}) x_i = 0_E$, d'où $x_i = 0_E$ car $\lambda_i - \lambda_{k+1} \neq 0$.

Et de plus, on a alors, $x_{k+1} = x = 0_E$, d'où, pour tout $i \in [1, k+1]$, $x_i = 0_E$. Il en résulte que la somme $\sum_{i=1}^{k+1} E_{\lambda_i}(u)$ est directe.

Ce qui achève le raisonnement par récurrence. Ainsi, pour tout entier $k \geq 2$, \mathcal{P}_k est vraie.

Corollaire 3.

Soit $u \in \mathcal{L}(E)$, $k \in \mathbb{N}$ et $\lambda_1, ..., \lambda_k \in \mathbb{K}$. Si $\lambda_1, ..., \lambda_k$ des valeurs propres de u toutes distinctes,

$$\sum_{i=1}^{k} \dim(E_{\lambda_i}(u)) \le \dim(E).$$

On suppose $\lambda_1,...,\lambda_k$ valeurs propres de u deux à deux distinctes. Alors les sous-espaces propres $E_{\lambda_i}(u)$ sont en somme directe et on a :

$$\sum_{i=1}^k \dim(E_{\lambda_i}(u)) = \dim\left(\bigoplus_{i=1}^k E_{\lambda_i}(u)\right) \le \dim(E).$$

Théorème 1.

On suppose E de dimension finie n. Tout endomorphisme u de E admet au plus n valeurs propres distinctes; autrement dit:

$$\#\mathrm{Sp}(u) \leq n.$$

Soit $u \in \mathcal{L}(E)$. On suppose par l'absurde que $\#\mathrm{Sp}(u) > n$. Alors il existe n+1 valeurs propres de udeux à deux distinctes $\lambda_1, ..., \lambda_{n+1}$. Pour chaque sous-espace propre $E_{\lambda_i}(u)$, on a dim $(E_{\lambda_i}(u)) \ge 1$, donc:

$$n+1 \le \sum_{i=1}^k \dim(E_{\lambda_i}(u)) \le n.$$

Contradiction. Par suite $\#\text{Sp}(u) \leq n$.

Remarque 5.

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par u. Les valeurs propres de l'endomorphisme $u_F \in \mathcal{L}(F)$ induit par u sur F sont les valeurs propres λ de u telles que $E_{\lambda}(u) \cap F \neq \{0\}$. Dans ce cas,

$$E_{\lambda}(u_F) = E_{\lambda}(u) \cap F.$$

3. Éléments propres d'une matrice carrée

a. Définitions

Définition 12.) Éléments propres d'une matrice

Soit $A \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

— On dit que λ est une valeur propre de A s'il existe $X \in M_{n,1}(\mathbb{K})$ non nulle telle que

$$AX = \lambda X$$
.

— Si $\lambda \in \mathbb{K}$ est une valeur propre de A, on dit que $X \in M_{n,1}(\mathbb{K})$ est un **vecteur propre** de A associé à λ si :

$$X \neq 0_{n,1}$$
 et $AX = \lambda X$.

— Si $\lambda \in \mathbb{K}$ une valeur propre de A, on appelle sous-espace propre associé de A à λ le sous-espace vectoriel noté $E_{\lambda}(A)$ de $M_{n,1}(\mathbb{K})$ défini par :

$$E_{\lambda}(A) = \operatorname{Ker}(A - \lambda I_n) = \{ X \in M_{n,1}(\mathbb{K}) \mid AX = \lambda X \}.$$

— On appelle **spectre** de A et on note Sp(A), l'ensemble des valeurs propres de A.

Remarque 6.

Soit $A \in M_n(\mathbb{K})$. On remarque que $\lambda \in \operatorname{Sp}(A)$ si, et seulement si, $A - \lambda I_n \notin GL_n(\mathbb{K})$.

Exercice 9.

Déterminer les valeurs, vecteurs et sous-espaces propres de $A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in M_n(\mathbb{K}).$

Correction.

— 1er cas : n = 1

On a $A = (1) = I_1 \in M_1(\mathbb{K})$ donc $Sp(A) = \{1\}$ et $E_1(A) = M_1(\mathbb{K})$.

— 2ème cas : $n \ge 2$

Pour $i \in [1, n]$, on note E_i le i-ième vecteur de la base canonique de $M_{n,1}(\mathbb{K})$ et $S = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

Alors on a, $i \in [2, n]$, $AE_1 = S = AE_i$ donc $E_1 - E_i \in \text{Ker}(A)$. La famille $(E_1 - E_i)_{2 \le i \le n}$ est une famille libre et, comme rg(A) = 1 (car Im(A) = Vect(S)), d'après le théorème du rang, $\dim(\text{Ker}(A)) = n - 1 >= 1$; d'où $(E_1 - E_i)_{2 \le i \le n}$ est une base de Ker(A).

Ainsi, 0 est valeur propre de A car $\operatorname{Ker}(A - 0I_n) = \operatorname{Ker}(A) \neq \{0_{n,1}\}$ et on a :

$$E_0(A) = \text{Ker}(A) = \text{Vect}(E_1 - E_2, \dots, E_1 - E_n).$$

On remarque que les sommes de chaque ligne sont égales et valent toutes n donc la colonne $S \neq 0_{n,1}$ est vecteur propre de A associé à n qui est donc valeur propre.

De plus, comme 0 et n sont des valeurs propres distinctes, leurs sous-espaces propres respectifs sont en somme directe et donc :

$$n = n - 1 + 1 \le \underbrace{\dim \left(E_0(A) \right)}_{=n-1} + \underbrace{\dim \left(E_n(A) \right)}_{>1} \le \dim \left(M_{n,1}(\mathbb{K}) \right) = n.$$

Par suite, dim $(E_n(A)) = 1$ d'où :

$$E_n(A) = \text{Vect}(S)$$
,

et $E_n(A)$ et $E_0(A)$ sont de somme $M_{n,1}(\mathbb{K})$ donc A ne possède pas d'autre valeur propre.

Conclusion:

$$\operatorname{Sp}(A) = \{0, n\} \text{ et } E_0(A) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \right) E_n(A) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right)$$

b. Propriétés du spectre d'une matrice

Proposition 14.

On suppose E de dimension finie n. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E, $u \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_{\mathcal{B}}(u) \in M_n(\mathbb{K})$. Alors on a $\operatorname{Sp}(A) = \operatorname{Sp}(u)$. De plus, pour tout $\lambda \in \operatorname{Sp}(u)$,

$$x = \sum_{i=1}^{n} x_i e_i \in E_{\lambda}(u)$$
 si, et seulement si, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in E_{\lambda}(A)$.

Démonstration.

L'application $\varphi_{\mathcal{B}}: E \to M_{n,1}(\mathbb{K})$ tel que

$$\varphi_{\mathcal{B}}: x = \sum_{i=1}^{n} x_i e_i \mapsto X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

est un isomorphisme.

Ainsi, l'équation $MX = \lambda X$ est équivalente à l'équation $u(x) = \lambda x$ d'où le résultat.

Proposition 15.

Soit $A, B \in M_n(\mathbb{K})$. Si A et B sont semblables, alors $\operatorname{Sp}(A) = \operatorname{Sp}(B)$ et pour tout $\lambda \in \operatorname{Sp}(A)$, $E_{\lambda}(A) = PE_{\lambda}(B)$ où $P \in GL_n(\mathbb{K})$ vérifie $B = P^{-1}AP$.

Démonstration

On peut voir deux matrices semblables comme les matrices d'un même endomorphisme dans deux bases différentes. On obtient alors le résultat souhaité en appliquant la proposition précédente. \Box

Proposition 16.

Soit \mathbb{K}' un sous-corps de \mathbb{K} et $A \in M_n(\mathbb{K}')$. Alors $\mathrm{Sp}_{\mathbb{K}'}(A) \subset \mathrm{Sp}_{\mathbb{K}}(A)$.

Démonstration

Soit $\lambda \in \mathbb{K}'$ une valeur propre de $A \in M_n(\mathbb{K}') \subset M_n(\mathbb{K})$ et $X \in \mathbb{M}_{n,1}(\mathbb{K}')$ un vecteur propre de A. Comme $\mathbb{M}_{n,1}(\mathbb{K}') \subset \mathbb{M}_{n,1}(\mathbb{K})$, alors X vu comme matrice à coefficients dans \mathbb{K} vérifie l'équation $AX = \lambda X$. Donc $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$.

Exercice 10.

Illustrer le résultat précédent en déterminant les spectres dans \mathbb{R} puis dans \mathbb{C} de $M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Démonstration.

Soit $\lambda \in \mathbb{K}$. On a, pour $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{M}_{n,1}(\mathbb{K})$,

$$M \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} (1+\lambda^2)x = 0 \\ (1+\lambda^2)y = 0 \end{cases}$$

Par suite, si $\mathbb{K} = \mathbb{R}$, $1 + \lambda^2 > 0$, l'unique solution de ce système est (0,0) (et ce, pour toute valeur

25

de λ). Donc $\mathrm{Sp}_{\mathbb{R}}(M) = \emptyset$.

Dans le cas où $\mathbb{K}=\mathbb{C}$, on a $1+\lambda^2=0$ si, seulement si $\lambda=\pm i$. Ainsi, $M\left(x,y\right)=\lambda X$ possède des solutions non nulles si, et seulement si, $\lambda=\pm i$. Les valeurs propres de M dans \mathbb{C} sont donc i et -i, d'où $\mathrm{Sp}_{\mathbb{C}}(M)=\{i,-i\}$.

26

Partie C

Polynôme caractéristique

Dans cette partie, l'espace vectoriel E est supposé de dimension finie n.

1. Polynôme caractéristique

a. Polynôme caractéristique d'une matrice carrée

L'application $M \mapsto \det(M)$ est une fonction polynomiale en les coefficients de M. Ainsi, pour $A \in M_n(\mathbb{K})$ fixée, l'application $\lambda \mapsto \det(\lambda I_n - A)$ est une fonction polynomiale de la variable λ ; ce qui justifie la définition suivante :

Définition 13.) Polynôme caractéristique d'une matrice carrée

Soit $A \in M_n(\mathbb{K})$. On appelle **polynôme caractéristique de** A et on note $\chi_A(X)$ l'unique polynôme de $\mathbb{K}[X]$ tel que, pour tout $\lambda \in \mathbb{K}$:

$$\chi_A(\lambda) = \det(\lambda I_n - A).$$

Remarque 7.

On notera directement $\chi_A(X) = \det(XI_n - A)$. Pour justifier cette notation, il faudrait pouvoir définir le déterminant d'une matrice à coefficients polynomiaux. Et c'est possible : au lieu d'utiliser le corps de base \mathbb{K} pour les coefficients, on utilise le corps $\mathbb{K}(X)$ des fractions rationnelles. La théorie reste la même.

Proposition 17.

Soit $A \in M_n(\mathbb{K})$. Le polynôme caractéristique χ_A est un polynôme unitaire de degré n et on a :

$$\chi_A(X)=X^n-\mathrm{Tr}(A)X^{n-1}+\ldots+(-1)^n\mathrm{det}(A).$$

Démonstration

On a, pour $\lambda \in \mathbb{K}$,

$$\chi_A(\lambda) = \det(\lambda I_n - A) = \begin{pmatrix} \lambda - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & & \vdots \\ \vdots & & \ddots & \\ -a_{n1} & -a_{n2} & \dots & \lambda - a_{nn} \end{pmatrix}$$

En utilisant la base canonique $\mathcal{B} = (e_1, ..., e_n)$ de $M_{n,1}(\mathbb{K})$, on a, pour $C_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \in M_{n,1}(\mathbb{K})$:

$$\chi_A(\lambda) = \det_{\mathcal{B}}(\lambda e_1 - C_1, ..., \lambda e_n - C_n).$$

L'application $\det_{\mathcal{B}}$ est multilinéaire, donc en développant l'expression précédente on remarque que l'on obtient un polynôme de degré au plus n et on a, pour $0 \le k \le n$ où c_{n-k} est le coefficient de $\chi_A(\lambda)$ correspondant à λ^{n-k} :

$$c_{n-k}\lambda^{n-k} = \sum_{i_1 < \dots < i_k \in [\![1,n]\!]} \det_{\mathcal{B}}(\lambda e_1, \dots, -C_{i_1}, \dots, \lambda e_j, \dots, -C_{i_k}, \dots, \lambda e_n)$$

$$= (-1)^k \lambda^{n-k} \sum_{i_1 < \dots < i_k \in [\![1,n]\!]} \det_{\mathcal{B}}(e_1, \dots, C_{i_1}, \dots, e_j, \dots, C_{i_k}, \dots, e_n).$$

Par suite, on obtient le résultat en évaluant, c_{n-k} pour k=0,1 et n :

$$-c_n = \det_{\mathcal{B}}(e_1, ..., e_n) = 1$$

$$-c_{n-1} = -\sum_{i=1}^{n} \det_{\mathcal{B}}(e_1, ..., C_i, ..., e_n) = -\sum_{i=1}^{n} a_{ii} = -\operatorname{Tr}(A).$$

$$-c_0 = (-1)^n \det_{\mathcal{B}}(C_1, ..., C_n) = \det(A).$$

Exercice 11.

Soit $A=(a_{ij})\in M_3(\mathbb{K})$. Exprimer le coefficient c_1 du monôme de degré 1 dans $\chi_A(X)$ en fonction des a_{ij} .

Correction.

On utilise les notations de la démonstrations précédente :

$$c_{1} = \det_{\mathcal{B}}(C_{1}, C_{2}, e_{3}) + \det_{\mathcal{B}}(C_{1}, e_{2}, C_{3}) + \det_{\mathcal{B}}(e_{1}, C_{2}, C_{3})$$

$$= \begin{vmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 1 \end{vmatrix} + \begin{vmatrix} a_{11} & 0 & a_{13} \\ a_{21} & 1 & a_{23} \\ a_{31} & 0 & a_{33} \end{vmatrix} + \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.$$

Théorème 2.

Soit $A \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Le scalaire λ est une valeur propre de A si, et seulement si, λ est une racine du polynôme caractéristique de A. Autrement dit :

$$\lambda \in \operatorname{Sp}(A) \iff \chi_A(\lambda) = 0.$$

Démonstration.

$\lambda \in \operatorname{Sp}(A)$

si, et seulement si,

$$Ker(A - \lambda I_n) \neq \{0\}$$

si, et seulement si,

$$A - \lambda I_n \notin GL_n(\mathbb{K})$$

si, et seulement si,

$$\lambda I_n - A \notin GL_n(\mathbb{K})$$

si, et seulement si,

$$\det(\lambda I_n - A) = 0$$

si, et seulement si,

$$\chi_A(\lambda) = 0.$$

Corollaire 4.

Soit $A \in M_n(\mathbb{K})$.

- Si $\mathbb{K} = \mathbb{C}$, alors A a au moins une valeur propre.
- Si $\mathbb{K} = \mathbb{R}$ et *n* est impair, alors *A* a au moins une valeur propre.

Démonstration.

On note χ_A le polynôme caractéristique de A.

— Si $\mathbb{K}=\mathbb{C}$, d'après le théorème de D'Alembert-Gauss, χ_A possède au moins une racine, donc d'après le théorème 2, A possède au moins une valeur propre.

— Si $\mathbb{K} = \mathbb{R}$ et n est impair, on a $\deg(\chi_A) = n$. Par suite, en appliquant le théorème des valeurs intermédiaires ou en raisonnant en terme de facteurs irréductibles, on peut montrer que χ_A possède au moins une racine, donc d'après le théorème 2, A possède au moins une valeur propre.

Méthode: Calcul des éléments propres d'une matrice $A \in M_n(\mathbb{K})$ dans le corps \mathbb{K} .

- On calcule le polynôme caractéristique χ_A de A.
- On factorise dans $\mathbb K$ le polynôme caractéristique χ_A de A et on détermine toutes ses racines.
- Chaque racine $\lambda \in \mathbb{K}$ de χ_A étant une valeur propre de χ_A , on résout le système

$$MX = \lambda X$$
,

qui, NÉCESSAIREMENT, admet une infinité de solution (car λ est une valeur propre de A).

• Pour chaque racine λ de χ_A , le sous-espace propre associé à λ est égal à l'ensemble des solutions du système précédent :

$$E_{\lambda}(A) = \{ X \in M_{n,1}(\mathbb{K}) \mid MX = \lambda X \}.$$

En pratique, on cherchera une base $(X_1,...,X_k)$ de l'ensemble des solutions de $MX=\lambda X$ i.e. une famille libre maximale de vecteurs propres associés à λ , afin d'écrire :

$$E_{\lambda}(A) = \text{Vect}(X_1, ..., X_n).$$

Exercice 12.

Calculer les valeurs propres et les sous-espaces propres des matrices suivantes dans $\mathbb R$ puis dans $\mathbb C$:

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 6 & 0 \\ -2 & 0 & 7 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 2 & -2 \\ \frac{3}{2} & 2 & -4 \\ 2 & 2 & -4 \end{pmatrix}$$
$$E = \begin{pmatrix} 1 & 2 & 2 \\ 4 & 2 & 8 \\ -2 & 2 & -4 \end{pmatrix}$$

Correction

1. $\chi_A = X^2 - 3X$, d'où $\operatorname{Sp}(A) = \{0, 3\}$ et on a :

$$E_0(A) = \operatorname{Vect}\begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$$
 et $E_3(A) = \operatorname{Vect}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

2. $\chi_B=X^3-X^2-3X-1,$ d'où $\mathrm{Sp}(B)=\{-1,1-\sqrt{2},1+\sqrt{2}\}$ et on a :

$$E_1(B) = \text{Vect}(\begin{pmatrix} 1\\ \frac{1}{2} \\ -\frac{5}{2} \end{pmatrix}), \ E_{1-\sqrt{2}}(B) = \text{Vect}(\begin{pmatrix} 0\\ 1\\ \sqrt{2}-1 \end{pmatrix}) \text{ et } E_{1+\sqrt{2}}(B) = \text{Vect}(\begin{pmatrix} 0\\ 1\\ -\sqrt{2}-1 \end{pmatrix})$$

3. $\chi_C = X^3 - 15X^2 + 72X - 108,$ d'où ${\rm Sp}(B) = \{3,6\}$ et on a :

$$E_3(C) = \operatorname{Vect}(\begin{pmatrix} 1 \\ 0 \\ \frac{1}{2} \end{pmatrix}) \text{ et } E_6(C) = \operatorname{Vect}(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix})$$

4. $\chi_D=X^3+2X^2+X+2,$ d'où $\mathrm{Sp}_{\mathbb{R}}(D)=\{-2\}$ et $\mathrm{Sp}(D)=\{\pm i\}.$ On a :

$$E_{-2}(D) = \text{Vect}\begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

et dans le cas de \mathbb{C} , on a de plus :

$$E_i(D) = \operatorname{Vect}\begin{pmatrix} 1\\ \frac{1}{2}(i+2)\\ 1 \end{pmatrix}) \text{ et } E_{-i}(D) = \operatorname{Vect}\begin{pmatrix} 1\\ -\frac{1}{2}(i+2)\\ 1 \end{pmatrix})$$

5. $\chi_E=X^3+X^2-30X,$ d'où $\mathrm{Sp}(E)=\{-6,0,5\}$ et on a :

$$E_{-6}(E) = \text{Vect}\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, E_0(E) = \text{Vect}\begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2} \end{pmatrix}) \text{ et } E_5(E) = \text{Vect}\begin{pmatrix} \frac{1}{20} \\ \frac{11}{21} \\ \frac{2}{11} \end{pmatrix}$$

Exercice 13. Matrice compagnon

Soit $n \in \mathbb{N}^*$, $a_0, ..., a_{n-1} \in \mathbb{K}$ et

$$A = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & \cdots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots \\ 0 & 0 & \cdots & 1 & 0 & -a_{n-2} \\ 0 & 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

 $\text{Montrer que } \chi_A = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0.$

En déduire que pour tout polynôme unitaire $P \in \mathbb{K}[X]$, il existe une matrice $A \in M_n(\mathbb{K})$ telle que $P = \chi_A$.

Correction.

Voici deux méthodes pour obtenir le résultat (on explicite ici seulement la deuxième):

1) On développe le déterminant $\det(\lambda I_n - A)$ par rapport à la dernière colonne.

2) On a
$$\det(\lambda I_n - A) = \begin{vmatrix} X & 0 & \cdots & \cdots & 0 & a_0 \\ -1 & X & \cdots & \cdots & 0 & a_1 \\ 0 & -1 & \ddots & & \vdots & & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & & \cdots \\ 0 & 0 & \cdots & -1 & X & a_{n-2} \\ 0 & 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

En faisant l'opération :
$$L_0 \leftarrow \sum_{i=0}^{n-1} X^i L_i$$
, on obtient :
$$\det(\lambda I_n - A) = \begin{vmatrix} 0 & 0 & \cdots & \cdots & 0 & P(X) \\ -1 & X & \cdots & \cdots & 0 & a_1 \\ 0 & -1 & \ddots & & \vdots & & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & & \cdots \\ 0 & 0 & \cdots & -1 & X & a_{n-2} \\ 0 & 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

où $P(X) = X^n + a_{n-1}X^{p-1} + \dots + a_1X + a_0.$

On obtient alors le résultat en développant par rapport à la 1ere ligne.

Pour $P = X^n + a_{n-1}X^{p-1} + ... + a_1X + a_0$ un polynôme unitaire de $\mathbb{K}[X]$, la matrice compagnon A de la question précédente a pour polynôme caractéristique le polynôme P.

Proposition 18.

Soit $A \in M_n(\mathbb{K})$. Si A est triangulaire (supérieure ou inférieure), alors $\chi_A = \prod_{i=1}^n (X - \alpha_i)$ où $\alpha_1, ..., \alpha_n$ sont les coefficients diagonaux de A.

Démonstration.

On a, pour $\lambda \in K$,

$$\chi_A(\lambda) = \det(\lambda I_n - A) = \begin{vmatrix} \lambda - \alpha_1 & * & \dots & * \\ 0 & \lambda - \alpha_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda - \alpha_n \end{vmatrix}$$

D'où $\chi_A(\lambda) = \prod_{i=1}^n (\lambda - \alpha_i)$.

b. Polynôme caractéristique d'un endomorphisme

Lemme 1.

Soit $A, B \in M_n(\mathbb{K})$. Si A et B sont semblables, alors $\chi_A = \chi_B$.

Démonstration.

On suppose A et B semblables. Alors il existe $P \in \mathbb{K}[X]$ tel que $B = PAP^{-1}$. Par suite, on a :

$$\chi_B = \det(XI_n - PAP^{-1}) = \det(P(XI_n - A)P^{-1}) = \frac{\det(P)}{\det(P)}\det(\lambda I_n - A) = \chi_A.$$

Définition 14.

Soit $u \in \mathcal{L}(E)$. On appelle **polynôme caractéristique** de u et on note $\chi_u(X)$ le polynôme caractéristique de toute matrice représentant u, i.e. si \mathcal{B} est une base de E et si $A = \operatorname{Mat}_{\mathcal{B}}(u)$,

$$\chi_u := \chi_A$$

Remarque 8.

Le lemme précédent nous permet d'affirmer que le polynôme caractéristique d'un endomorphisme est bien défini : en effet, si A et B sont des matrices représentant u, elles sont semblables et donc ont même polynôme caractéristique.

Proposition 19.

Soit $u \in \mathcal{L}(E)$. On a, pour tout $\lambda \in \mathbb{K}$:

$$\chi_u(\lambda) = \det(\lambda \operatorname{Id}_E - u) = \lambda^n - \operatorname{Tr}(u)\lambda^{n-1} + \dots + (-1)^n \det(u).$$

Démonstration.

Il suffit d'écrire $\chi_u=\chi_A$ avec A une matrice représentant u. On a alors

$$\chi_u = \chi_A = \lambda^n - \operatorname{Tr}(A)\lambda^{n-1} + \ldots + (-1)^n \operatorname{det}(A) = \lambda^n - \operatorname{Tr}(u)\lambda^{n-1} + \ldots + (-1)^n \operatorname{det}(u);$$

et de plus, la matrice $\lambda I_n - A$ est une matrice représentant $\lambda \mathrm{Id}_E - u$, donc

$$\chi_u = \chi_A = \det(\lambda I_n - A) = \det(\lambda \operatorname{Id}_E - u).$$

Théorème 3.

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Le scalaire λ est une valeur propre de u si, et seulement si, λ est une racine du polynôme caractéristique de u. Autrement dit :

$$\lambda \in \operatorname{Sp}(u) \iff \chi_u(\lambda) = 0.$$

Démonstration.

On écrit $\chi_u = \chi_A$ avec A une matrice représentant u et on a, pour $\lambda \in \mathbb{K}$:

$$\lambda \in \mathrm{Sp}(u) \ \Leftrightarrow \ \lambda \in \mathrm{Sp}(A) \ \Leftrightarrow \ \chi_A(\lambda) = 0 \ \Leftrightarrow \ \chi_u(\lambda) = 0.$$

Remarque 9.

Comme pour le cas des matrices, on en déduit que si $\mathbb{K} = \mathbb{C}$ ou si $\mathbb{K} = \mathbb{R}$ avec $\dim(E)$ impair, alors tout endomorphisme de E possède au moins une valeur propre.

c. Polynôme caractéristique d'un endomorphisme induit

Proposition 20.

Soit F un sous-espace vectoriel de E et $u \in \mathcal{L}(E)$. Si F est stable par u, alors le polynôme caractéristique χ_{u_F} de l'endomorphisme u_F induit par u sur F divise χ_u

Démonstration.

On suppose que F est stable par u. Sot $\mathcal{B}=(e_1,...,e_n)$ une base de E adaptée à F où $\mathcal{B}'=(e_1,...,e_p)$ forme une base de F. On pose $M=\operatorname{Mat}_{\mathcal{B}}(u)$ et $A=\operatorname{Mat}_{\mathcal{B}'}(u_F)$. Alors il existe $B\in M_{p,n-p}(\mathbb{K})$ et $C\in M_{n-p,n-p}(\mathbb{K})$ telles que :

$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right)$$

Par suite, on a, en notant $Q = \det(XI_{n-p} - C) \in \mathbb{K}[X]$:

$$\begin{split} \chi_u &= \det(XI_n - M) \\ &= \left| \frac{XI_p - A \mid -B}{0 \mid XI_{n-p} - C} \right| \\ &= \det(XI_p - A).\det(XI_{n-p} - C) \\ &= \chi_A.Q \\ \chi_u &= \chi_{u_F}Q. \end{split}$$

Il en résulte que $\chi_{u_F}|\chi_u$.

Remarque 10.

- On a alors $\operatorname{Sp}(u_F) \subset \operatorname{Sp}(u)$;
- Si χ_u est scindé (resp. scindé à racines simples) alors χ_{u_F} l'est aussi ;
- Par une récurrence finie, on obtient que si $E = \bigoplus_{i=1}^k F_i$ et chaque F_i est stable par u, alors

$$\chi_u = \prod_{i=1}^k \chi_{u_{F_i}} = \chi_{u_{F_1}} \dots \chi_{u_{F_k}}.$$

2. Ordre de multiplicité d'une valeur propre

Définition 15. Multiplicité d'une valeur propre

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp}(u)$. On définit l'**ordre de multiplicité** - ou plus simplement la **multiplicité** - de la valeur propre λ de u et on note $m(\lambda)$ l'ordre de multiplicité de λ comme racine du polynôme caractéristique χ_u de u.

On définit de même la multiplicité d'une valeur propre d'une matrice $A \in M_n(\mathbb{K})$.

Remarque 11.

— Autrement dit, si $Sp(u) = \{\lambda_1, ..., \lambda_k\}$ avec $\lambda_1, ..., \lambda_k$ deux à deux distinctes alors

$$\chi_u = P \prod_{i=1}^k (X - \lambda_i)^{m_i},$$

où $P\in\mathbb{K}[X]$ n'a pas de racine dans \mathbb{K} et on a, pour tout $i\in[\![1,k]\!]$:

$$m(\lambda_i) = m_i$$
.

— On a donc :

$$\deg(P) + m(\lambda_1) + \dots + m(\lambda_k) = n.$$

— En particulier, pour λ une valeur propre, on a : $1 \le m(\lambda) \le n = \dim(E)$.

Proposition 21.

Soit $u \in \mathcal{L}(E)$ et λ une valeur propre de u. On a :

$$1 \leq \dim(E_{\lambda}(u)) \leq m(\lambda).$$

Démonstration.

On note $F = E_{\lambda}(u)$. Alors F est stable par u et l'endomorphisme induit $u_F \in \mathcal{L}(F)$ de u sur F est égal à l'homothétie $\lambda \mathrm{Id}_F$. Comme F est un sous-espace propre de u, on a $p = \dim(F) \geq 1$ et d'après la proposition précédente, on a :

$$(X - \lambda)^p = \chi_{u_F} | \chi_u = Q(X - \lambda)^{m(\lambda)},$$

avec $Q \in \mathbb{K}[X]$ et $(X - \lambda)$ premiers entre eux. Donc, d'après le lemme de Gauss, $(X - \lambda)^p | (X - \lambda)^{m(\lambda)}$.

Il en résulte que $1 \le p = \dim(E_{\lambda}(u)) \le m(\lambda)$.

Corollaire 5.

Soit $u \in \mathcal{L}(E)$. Si λ est une valeur propre simple de u, alors dim $(E_{\lambda}(u)) = 1$.

Démonstration.

On suppose que λ est une valeur propre simple de u, d'après la proposition précédente, $1 \le \dim(E_{\lambda}(u)) \le 1$ donc $\dim(E_{\lambda}(u)) = 1$.

Partie D

Diagonalisation et trigonalisation

Dans cette partie, E désigne un espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

1. Endomorphismes et matrices diagonalisables

Définition 16.) Endomorphisme/matrice diagonalisable

- Soit $u \in \mathcal{L}(E)$. On dit que u est **diagonalisable** s'il existe une base dans laquelle la matrice de u est diagonale.
- Soit $A \in M_n(\mathbb{K})$. On dit que A est **diagonalisable** si elle est semblable à une matrice diagonale, i.e. s'il existe $D \in M_n(\mathbb{K})$ diagonale et $P \in GL_n(\mathbb{K})$ tels que :

$$A = PDP^{-1}.$$

Proposition 22.

Soit $u \in \mathcal{L}(E)$. Alors u est diagonalisable si, et seulement si, il existe une base de vecteurs propres de u.

Démonstration.

• (\Rightarrow). Si u est diagonalisable, il existe une base $\mathcal{B}=(e_1,...,e_n)$ de E telle que $A=\operatorname{Mat}_{\mathcal{B}}(u)=\operatorname{diag}(\alpha_1,...,\alpha_n)$. Par suite, on a, pour chaque $i\in [1,]n$, par définition des coefficients de A,

$$u(e_i) = \alpha_i e_i \text{ et } e_i \neq 0_E.$$

Donc les éléments de \mathcal{B} sont des vecteurs propres de u.

• (\Leftarrow). Si $\mathcal{B}=(e_1,...,e_n)$ est une base de vecteurs propres associés respectivement à $\alpha_1,...,\alpha_n\in\mathbb{K}$, alors :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \alpha_n \end{pmatrix} \begin{array}{c} e_1 \\ \vdots \\ \vdots \\ e_n \\ u(e_1) & \dots & \dots & u(e_n) \end{pmatrix}$$

Donc la matrice de u est diagonale dans la base \mathcal{B} .

Exercice 14.

- 1. Soit $\mathbb{K}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. L'endomorphisme de $\mathbb{K}_n[X]$, $\Delta_n: P \mapsto P'$ est-il diagonalisable?
- 2. Montrer que les projecteurs et les symétries de E sont diagonalisables.

Correction

- 1. Δ ne possède qu'une seule valeur propre 0, et les vecteurs propres associés à 0 sont les polynômes constants (non nuls). Ainsi, on ne peut pas obtenir une base de $\mathbb{K}_n[X]$ formée de vecteurs de propres de Δ_n (sauf dans le cas n=0).
- 2. Soit p un projecteur de E i.e. $p \in \mathcal{L}(E)$ et $p^2 = p$. On rappelle qu'alors $F = \operatorname{Ker}(p)$ et $G = \operatorname{Im}(p)$ sont supplémentaires dans E et que $G = \operatorname{Ker}(p \operatorname{Id}_E)$ (et alors p est la projection sur F parallèlement à G). On note $r = \operatorname{rg}(p)$. Considèrons $\mathcal{B} = (e_1, ..., e_r, e_{r+1}, ..., e_n)$ une base de E adaptée à $E = F \oplus G$. Alors, on a :

$$\operatorname{Mat}_{\mathcal{B}}(p) = \left(\begin{array}{c|c} I_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & 0_{n-r,n-r} \end{array}\right)$$

La matrice de p dans la base $\mathcal B$ étant diagonale, p est diagonalisable.

Soit s une symétrie de E. Alors $s \in \mathcal{L}(E)$ et $s^2 = \mathrm{Id}_E$. En posant $p = \frac{1}{2}(s + \mathrm{Id}_E)$, on vérifie que p est un projecteur de E (ce que le lecteur fera sans hésiter!). Or, d'après ce qui précède, p est diagonalisable donc il existe une base \mathcal{B} telle que $D = \mathrm{Mat}_{\mathcal{B}}(p)$ est diagonale. Or on a $s = 2p - \mathrm{Id}_E$ et l'application $\mathrm{Mat}_{\mathcal{B}}: \mathcal{L}(E) \to M_n(\mathbb{K})$ est linéaire et vérifie $\mathrm{Mat}_{\mathcal{B}}(\mathrm{Id}_E) = I_n$ (cette application est même un isomorphisme d'algèbres), donc :

$$\operatorname{Mat}_{\mathcal{B}}(s) = \operatorname{Mat}_{\mathcal{B}}(2p - \operatorname{Id}_{E}) = 2D - I_{n}$$

qui est une matrice diagonale comme combinaison linéaire de matrices diagonales. Par suite, s est diagonalisable.

Plus précisément, en utilisant la forme exacte de la matrice de p dans la base \mathcal{B} de E adpatée à la somme directe de son image et de son noyau, on trouve, avec r le rang de p:

$$\operatorname{Mat}_{\mathcal{B}}(s) = \left(\begin{array}{c|c} I_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & -I_{n-r} \end{array}\right)$$

Proposition 23.

Soit $u \in \mathcal{L}(E)$ et $A \in M_n(\mathbb{K})$ une matrice représentant u dans une certaine base de E. Alors A est diagonalisable si, et seulement si, u est diagonalisable.

Démonstration.

u est diagonalisable si, et seulement si, il existe une matrice D diagonale représentant u. Or A et D représentent toutes deux u si, et seulement si, A et D sont semblables. Donc u est diagonalisable si, et seulement si, A est diagonalisable.

Corollaire 6.

Soit $A \in M_n(\mathbb{K})$. Alors A est diagonalisable si, et seulement si, l'endomorphisme de \mathbb{K}^n canoniquement associé à A est diagonalisable.

Démonstration.

On applique la proposition précédente au cas particulier : $E = \mathbb{K}^n$, $A = (a_{i,j}) \in M_n(\mathbb{K})$ et $u \in \mathcal{L}(\mathbb{K}^n)$ tel que :

$$u: (x_1, ..., x_n) \mapsto \left(\sum_{j=1}^n a_{1,j} x_j, ..., \sum_{j=1}^n a_{n,j} x_j\right).$$

Proposition 24.

Soit $A \in M_n(\mathbb{K})$. Alors A est diagonalisable si, et seulement si, il existe D une matrice diagonale tel que $A = PDP^{-1}$ où $P = (C_1 \mid ... \mid C_n)$ et $C_1, ..., C_n$ constituent une base de $M_{n,1}(\mathbb{K})$ formée de vecteurs propres de A.

On suppose A diagonalisable. Alors l'endomorphisme u de \mathbb{K}^n canoniquement associé à A est diagonalisable, donc il existe une base $\mathcal{B}'=(\varepsilon_1,...,\varepsilon_n)$ de \mathbb{K}^n formée de vecteurs propres de u. Soit P la matrice de passage de la base canonique \mathcal{B} de \mathbb{K}^n vers la base \mathcal{B}' . La formule de changement de base pour les matrices représentant un endomorphisme nous donne

$$\operatorname{Mat}_{\mathcal{B}'}(u) = P^{-1}\operatorname{Mat}_{\mathcal{B}}(u)P,$$

Or $\operatorname{Mat}_{\mathcal{B}}(u) = A$ et $\operatorname{Mat}_{\mathcal{B}'} = D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ où λ_i est la valeur propre associé à ε_i . Par

$$A = PDP^{-1}$$
.

2. Diagonalisation

Proposition 25.

Soit $u \in \mathcal{L}(E)$ avec $Sp(u) = \{\lambda_1, ..., \lambda_k\}$ avec $\lambda_1, ..., \lambda_k$ deux à deux distincts. Les assertions suivantes sont équivalentes :

i) u est diagonalisable;

ii)
$$E = \bigoplus_{i=1}^k E_{\lambda_i}(u)$$
;

ii)
$$E = \bigoplus_{i=1}^k E_{\lambda_i}(u)$$
;
iii) $n = \dim(E) = \sum_{i=1}^k \dim(E_{\lambda_i}(u))$.

Démonstration.

On démontre ii)⇔iii), i)⇔ii) puis i)⇒ii).

• ii) \Leftrightarrow iii). Les $E_{\lambda_i}(u)$ sont en somme directe, donc on a

$$\dim(\bigoplus_{i=1}^k E_{\lambda_i}(u)) = \sum_{i=1}^k \dim(E_{\lambda_i}(u)).$$

Ainsi, $\bigoplus_{i=1}^k E_{\lambda_i}(u) = E$ si, et seulement si, $\sum_{i=1}^k \dim(E_{\lambda_i}(u)) = n$.

- i) \Leftarrow ii). On suppose u diagonalisable. Alors il existe une base de E formée de vecteurs propres de u i.e. formée d'éléments appartenant aux sous-espaces propres de u. Par suite, tout élément de E se décompose en somme d'éléments des sous-espaces propres qui sont en somme directe; donc E est égal à la somme directe des sous-espaces propres.
- ii) \Leftarrow i). On suppose $\bigoplus_{i=1}^k E_{\lambda_i}(u) = E$. Si on considère une base \mathcal{B} de E adapté à cette somme directe, on a :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 I_{\dim(E_{\lambda_1}(u))} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_k I_{\dim(E_{\lambda_k}(u))} \end{pmatrix}$$

qui est une matrice diagonale, donc u est diagonalisable.

Proposition 26.

Soit $A \in M_n(\mathbb{K})$ avec $\operatorname{Sp}(A) = \{\lambda_1, ..., \lambda_k\}$ avec $\lambda_1, ..., \lambda_k$ deux à deux distincts. Les assertions suivantes sont équivalentes :

i) A est diagonalisable;

ii)
$$M_{n,1}(\mathbb{K}) = \bigoplus_{i=1}^k E_{\lambda_i}(A);$$

iii)
$$n = \sum_{i=1}^{k} \dim(E_{\lambda_i}(A)).$$

Démonstration.

On applique la proposition précédente à l'endomorphisme canoniquement associé à A.

Exercice 15.

- 1. Soit $A \in M_n(\mathbb{K})$. On suppose que A possède une unique valeur propre $\lambda \in \mathbb{K}$. Montrer que A est diagonalisable si, et seulement si, $A = \lambda I_n$.
- 2. Soit $A \in M_n(\mathbb{K})$ une matrice nilpotente i.e. vérifiant qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = 0_n$. Montrer que A est diagonalisable si, et seulement si, $A = 0_n$.

Correction.

1. On suppose que λ est la seule valeur propre de A. Si A est diagonalisable, alors il existe D diagonale et $P \in GL_n(\mathbb{K})$ tels que $A = PDP^{-1}$. Comme A et D sont semblables, ils ont même polynôme caractéristique et donc même spectre $\operatorname{Sp}(A) = \{\lambda\} = \operatorname{Sp}(D)$. Or D s'écrit sous la forme diag $(\alpha_1, ..., \alpha_n)$ et donc son spectre vérifie :

$$\{\alpha_1, ..., \alpha_n\} = \operatorname{Sp}(D) = \{\lambda\}.$$

Par suite, $\alpha_1 = ...\alpha_n = \lambda$ et donc $D = \lambda I_n$. Il en résulte que :

$$A = PDP^{-1} = P\lambda I_n P^{-1} = \lambda PP^{-1} = \lambda I_n.$$

Réciproquement, si $A = \lambda I_n$, alors A est diagonalisable car diagonale.

2. Soit A une matrice nilpotente. Alors il existe $k \in \mathbb{N}^*$ tel que $A^k = 0_n$. Alors A n'est pas inversible car $\det(A)^k = \det(A^k) = \det(0_n) = 0$ d'où $\det(A) = 0$. Par suite, 0 est valeur propre de A.

De plus, si $X \neq 0_{n,1}$ est vecteur propre associé à une valeur prore λ de A, on a, comme $AX = \lambda X$:

$$0_{n,1} = 0_n X = A^k X = \lambda^k X$$

d'où $\lambda^k = 0$ car $X \neq 0_{n,1}$ et donc $\lambda = 0$.

Il en resulte que A possède 0 pour unique valeur propre. Ainsi, d'après la question précédente, A est diagonalisable si, et seulement si, $A = 0I_n = 0_n$.

Remarque 12.

Soit $u \in \mathcal{L}(E)$ et $\mathrm{sp}(u) = \{\lambda_1,...,\lambda_k\}$ avec $\lambda_1,...,\lambda_k$ deux à deux distinctes. Si u est diagonalisable, alors $E = \bigoplus_{i=1}^k E_{\lambda_i}(u)$ et si on note p_{λ_m} le projecteur sur $E_{\lambda_m}(u)$ parallèlement à $\bigoplus_{i=1}^k E_{\lambda_i}(u)$, alors

$$u = \lambda_1 p_{\lambda_1} + \dots + \lambda_k p_{\lambda_k}$$

Théorème 4.) Théorème de diagonalisation d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. Alors u est diagonalisable si, et seulement si, il vérifie les deux conditions suivantes :

- i) le polynôme caractéristique χ_u de u est scindé.
- ii) la multiplicité de chaque valeur propre de u est égale à la dimension de son sous-espace propre associé, i.e. pour tout $\lambda \in \operatorname{Sp}(u)$,

$$m(\lambda) = \dim(E_{\lambda}(u)).$$

Démonstration.

• (\Rightarrow). On suppose u diagonalisable. On note $\lambda_1, ..., \lambda_k$ ses valeurs propres (deux à deux distinctes). Alors $E = \bigoplus_{i=1}^k E_{\lambda_i}(u)$ et l'endomorphisme u_i induit sur $E_{\lambda_i}(u)$ par u est égal à l'homothétie $u_i = \lambda_i \operatorname{Id}_{E_{\lambda_i}(u)}$.

De plus, en notant $d_i = \dim(E_{\lambda_i}(u))$ on a

$$\chi_u = \chi_{u_1} ... \chi_{u_k} = (X - \lambda_1)^{d_1} ... (X - \lambda_k)^{d_k}.$$

Donc, χ_u est scindé et pour tout $i \in [1, k], m(\lambda_i) = d_i$.

• (\Leftarrow). On suppose i) et ii). D'après i), on a $\chi_u = \prod_{i=1}^k (X - \lambda_i)^{m_i}$ où les λ_i sont deux à deux distincts. Donc $\mathrm{Sp}(u) = \{\lambda_1, ..., \lambda_k\}$ et on a, d'après ii) :

$$n = \deg(\chi_u) = \sum_{i=1}^n m_i = \sum_{i=1}^n m(\lambda_i) = \sum_{i=1}^n \dim(E_{\lambda_i}(u)).$$

Donc d'après la proposition 25, u est diagonalisable.

Théorème 5. Théorème de diagonalisation d'une matrice

Soit $A \in M_n(\mathbb{K})$. Alors A est diagonalisable si, et seulement si, il vérifie les deux conditions suivantes :

- i) le polynôme caractéristique χ_A de A est scindé.
- ii) la multiplicité de chaque valeur propre de A est égale à la dimension de son sous-espace propre associé, i.e. pour tout $\lambda \in \operatorname{Sp}(A)$,

$$m(\lambda) = \dim(E_{\lambda}(A)).$$

Démonstration.

On raisonne de la même manière que pour le théorème précédent.

Corollaire 7.

Soit $u \in \mathcal{L}(E)$ et $A \in M_n(\mathbb{K})$. On rappelle que $\dim(E) = n$.

- Si le polynôme caractéristique de u est scindé à racines simples i.e. si u possède n valeurs propres distinctes, alors u est diagonalisable.
- Si le polynôme caractéristique de A est scindé à racines simples i.e. si A possède n valeurs propres distinctes, alors A est diagonalisable.

Démonstration.

Si χ_u est scindé à racines simples alors, pour tout $\lambda \in \operatorname{Sp}(u)$, on a $1 \leq \dim(E_\lambda(u)) \leq m(\lambda) = 1$, donc $\dim(E_\lambda(u)) = m(\lambda)$. On applique alors le théorème précédent.

Proposition 27. Forme de la matrice diagonalisée

Soit $A \in M_n(\mathbb{K})$ où $\operatorname{Sp}(A) = \{\lambda_1, ..., \lambda_k\}$ avec $\lambda_1, ..., \lambda_k$ deux à deux distinctes. Si A est diagonalisable, alors $A = PDP^{-1}$ où :

$$D = \begin{pmatrix} \lambda_1 I_{m(\lambda_1)} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_k I_{m(\lambda_k)} \end{pmatrix}$$

et P est la matrice de passage de la base canonique \mathcal{B} de $M_n(\mathbb{K})$ vers une base $\mathcal{B}'=(C_1,...,C_n)$ adaptée à la somme directe $\bigoplus_{i=1}^k E_{\lambda_i}(A)$, i.e.

$$P = (C_1 \mid \dots \mid C_n)$$

Remarque 13.

Soit $u \in \mathcal{L}(E)$ avec $\operatorname{Sp}(u) = \{\lambda_1, ..., \lambda_k\}$ où $\lambda_1, ..., \lambda_k$ deux à deux distinctes et A sa matrice dans une certaine base \mathcal{B} . Si u est diagonalisable, alors $A = PDP^{-1}$ où D à la même forme que dans la proposition précédente et P est la matrice de passage de la base \mathcal{B} de $M_n(\mathbb{K})$ vers une

base $\mathcal{B}' = (C_1, ..., C_n)$ adaptée à la somme directe $\bigoplus_{i=1}^k E_{\lambda_i}(u)$.

Méthode : Diagonaliser une matrice $A \in M_n(\mathbb{K})$ dans \mathbb{K} .

- On calcule le polynôme caractéristique χ_A de A. S'il est scindé dans \mathbb{K} , on continue; s'il ne l'est pas, A n'est pas diagonalisable.
- On calcule les éléments propres de A et on détermine la dimension de chaque sous-espace propre de A. Si la multiplicité de **chaque** valeur propre est égale à la dimension du sous-espace associé, alors A est diagonalisable et on continue; sinon A n'est pas diagonalisable.
- On met A sous la forme $A=PDP^{-1}$ où P est la matrice formée par les vecteurs propres de A

Exercice 16.

Diagonaliser (si c'est possible) les matrices suivantes dans $\mathbb R$ puis $\mathbb C$:

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 & 10 \\ 0 & 6 & 8 \\ 0 & 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix}$$
$$D = \begin{pmatrix} i & -1 & i \\ 0 & 1 - 3i & -2 \\ 0 & -4 & 1 + 3i \end{pmatrix}$$

42

Correction.

1. $\chi_A=X^3+3X^2-2=(X-1)(X+2)^2,$ d'où $\mathrm{Sp}(A)=\{-2,1\}$ et on a :

$$E_1(A) = \operatorname{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 et $E_3(A) = \operatorname{Vect}\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$; $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$)

d'où A est diagonalisable et $A=PDP^{-1}$ avec

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

2. $\chi_B=X^3-7X^2+4X+12=(X+1)(X-2)(X+6)$ donc B est diagonalisable (polynôme scindé à racine simples) et $\mathrm{Sp}(B)=\{-1,2,6\}$ et on a :

$$E_{-1}(B) = \operatorname{Vect}\begin{pmatrix} 62\\24\\-21 \end{pmatrix}), \quad E_{2}(B) = \operatorname{Vect}\begin{pmatrix} 1\\0\\0 \end{pmatrix})$$

$$E_6(B) = \operatorname{Vect}\begin{pmatrix} 1\\4\\0 \end{pmatrix}$$
).

d'où B est diagonalisable et $B = PDP^{-1}$ avec

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \quad P = \begin{pmatrix} 62 & 1 & 1 \\ 24 & 0 & 4 \\ -21 & 0 & 0 \end{pmatrix}$$

3. $\chi_C = X^3 + 4X = X(X^2 + 4) = X(X - 2i)(X + 2i)$, d'où C n'est pas diagonalisable dans \mathbb{R} (car son polynôme caractéristique n'est pas scindé dans $\mathbb{R}[X]$) et $\mathrm{Sp}_{\mathbb{R}}(B) = \{0\}$. Par contre, C est diagonalisable dans \mathbb{C} (polynôme scindé à racines simples dans $\mathbb{C}[X]$) et on trouve :

$$E_0(C) = \operatorname{Vect}(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix});$$

$$E_{2i}(C) = \operatorname{Vect}\begin{pmatrix} -1\\i\\1 \end{pmatrix}, \quad E_{-2i}(C) = \overline{E_{2i}(C)} = \operatorname{Vect}\begin{pmatrix} -1\\-i\\1 \end{pmatrix}.$$

Donc $C = PDP^{-1}$ avec :

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2i & 0 \\ 0 & 0 & -2i \end{pmatrix} \quad P = \begin{pmatrix} 1 & -1 & -1 \\ 0 & i & -i \\ 1 & 1 & 1 \end{pmatrix}$$

4. $\chi_D=(X-i)(X-(1-i))(X-(1+i))$, d'où D est diagonalisable (polynôme scindé à racines simples) et on trouve :

$$E_i(D) = \operatorname{Vect}\begin{pmatrix} 1\\0\\0 \end{pmatrix};$$

$$E_{1-i}(D) = \operatorname{Vect}\begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}, \quad E_{1+i}(D) = \operatorname{Vect}\begin{pmatrix} i \\ i \\ 2 \end{pmatrix}.$$

Donc $D = P \mathbb{D} P^{-1}$ avec :

$$\mathbb{D} = \begin{pmatrix} i & 0 & 0 \\ 0 & 1 - i & 0 \\ 0 & 0 & 1 + i \end{pmatrix} \quad P = \begin{pmatrix} 1 & 0 & i \\ 0 & i & i \\ 0 & 1 & 2 \end{pmatrix}$$

Exercice 17.

On considère l'application u définie sur $\mathbb{K}_2[X]$ par :

$$u: P \mapsto u(P) = (X+1)P' + X^2P\left(\frac{1}{X}\right)$$

- 1. Montrer que u est une application linéaire à valeurs dans $\mathbb{K}_2[X]$.
- 2. Chercher, si c'est possible, une base qui diagonalise u et, le cas échéant, donner sa matrice dans cette base.

Correction

1. Soit $P \in \mathbb{K}[X]$. On a $(X+1)P' \in \mathbb{K}[X] \subset \mathbb{K}(X)$ et $P(1/X) \in \mathbb{K}(X)$; or $X^2 \in \mathbb{R}(X)$ et $\mathbb{R}(X)$ est un anneau donc $(X+1)P' + X^2P(1/X) \in \mathbb{K}(X)$. Ainsi, on a $u : \mathbb{R}_2[X] \to \mathbb{R}(X)$. Montrons la linéarité de u:

Soit $P,Q \in \mathbb{R}_2[X]$ et $\lambda, \mu \in \mathbb{R}$. On a, par linéarité de la dérivation et de l'évaluation, puis par opérations dans l'anneau $\mathbb{R}(X)$:

$$u(\lambda P + \mu Q) = (X+1)(\lambda P + \mu Q)' + X^2(\lambda P + \mu Q) \left(\frac{1}{X}\right)$$

$$= (X+1)(\lambda P' + \mu Q') + X^2 \left(\lambda P\left(\frac{1}{X}\right) + \mu Q\left(\frac{1}{X}\right)\right)$$

$$= \lambda(X+1)P' + \mu(X+1)Q' + \lambda X^2 P\left(\frac{1}{X}\right) + \mu X^2 Q\left(\frac{1}{X}\right)$$

$$= \lambda \left((X+1)P' + X^2 P\left(\frac{1}{X}\right)\right) + \mu \left((X+1)Q' + X^2 Q\left(\frac{1}{X}\right)\right)$$

$$u(\lambda P + \mu Q) = \lambda u(P) + \mu u(Q).$$

D'où la linéarité de u.

Ainsi, $u(0) = 0 \in \mathbb{R}_2[X]$ et, de plus, pour $P \in \mathbb{R}_2[X] \setminus \{0\}$, on a $0 \le \deg(P) \le 2$ et ainsi :

$$\deg\left(X^2P\left(\frac{1}{X}\right)\right) = 2 - \deg(P) \in [0, 2]$$

 et

$$\deg((X+1)P') = 1 + (\deg(P) - 1) = \deg(P) \in [0, 2]$$

donc $X^2P(1/X), (X+1)P' \in \mathbb{R}_2[X]$ qui est un espace vectoriel d'où $u(P) \in \mathbb{R}_2[X]$ par combinaison linéaire.

Il en résulte que u est un endomorphisme de $\mathbb{R}_2[X]$.

- 2. Considérons la base canonique $\mathcal{B} = (1, X, X^2)$ de $\mathbb{R}_2[X]$. Comme :
 - $\star u(1) = (X+1)0 + X^2 \times 1 = X^2;$

 - * $u(X) = (X+1)1 + X^2 \times 1/X = 2X + 1;$ * $u(X^2) = (X+1)2X + X^2 \times 1/X^2 = 2X^2 + 2X + 1;$

on obtient:

$$A = \mathrm{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix}$$

On a $\chi_u = \chi_A = \det(XI_3 - A) = X(X - 1)(X - 3)$ qui est scindé à racines simples donc uest diagonalisable. Déterminons une base qui diagonalise u.

On sait que, pour $\lambda \in \operatorname{Sp}(u) = \operatorname{Sp}(A)$, on a $P \in E_{\lambda}(u)$ si, et seulement si, $\operatorname{Mat}_{\mathcal{B}}(P) \in E_{\lambda}(A)$. On détermine alors les sous-espaces propres de A; après calculs, on trouve :

$$E_0(A) = \operatorname{Vect}\left(\begin{pmatrix} 2\\1\\-1 \end{pmatrix}\right) \quad E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\right) \text{ et } E_3(A) = \operatorname{Vect}\left(\begin{pmatrix} -1\\-1\\1 \end{pmatrix}\right)$$

Par suite, on obtient:

- $\star E_0(A) = \text{Vect}((-X^2 + X + 2))$;
- $\star E_1(A) = \text{Vect}((-X^2 + 2X + 1));$
- $\star E_3(A) = \text{Vect}((X^2 X 1)).$

On obtient donc une base $\mathcal{C}=(-X^2+X+2,-X^2+2X+1,X^2-X-1)$ de $\mathbb{R}_2[X]$ formée de vecteurs propres de u i.e. \mathcal{C} est une base qui diagonalise u et on a :

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

3. Endomorphismes et matrices trigonalisables

Définition 17. Endomorphisme/matrice trigonalisable

- Soit $u \in \mathcal{L}(E)$. On dit que u est **trigonalisable** s'il existe une base dans laquelle la matrice de u est triangulaire supérieure.
- Soit $A \in M_n(\mathbb{K})$. On dit que A est **trigonalisable** si elle est semblable à une matrice triangulaire supérieure, i.e. s'il existe $T \in M_n(\mathbb{K})$ triangulaire supérieure et $P \in GL_n(\mathbb{K})$ tels que:

$$A = PTP^{-1}.$$

Proposition 28. | Forme d'une matrice trigonalisée

Soit $A \in M_n(\mathbb{K})$ et $\operatorname{Sp}(A) = \{\lambda_1, ..., \lambda_k\}$ avec $\lambda_1, ..., \lambda_k$ deux à deux distincts. Si A est trigonalisable, alors A est semblable à :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & \dots & \dots & * \\ 0 & \ddots & \ddots & & & & \vdots \\ \vdots & \ddots & \lambda_1 & \ddots & * & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & * \\ 0 & \dots & \dots & \dots & \dots & 0 & \lambda_k \end{pmatrix}$$

Démonstration.

A et T ont même polynôme caractéristique qui est scindé et dont les racines sont $\lambda_1,...,\lambda_k$ de multiplicités respectives $m(\lambda_1),...,m(\lambda_k)$. Or T étant triangulaire, les coefficients diagonaux de T sont exactement les racines de χ_T et le nombre d'apparition d'un coefficient sur la diagonale est exactement sa multiplicité dans χ_T . D'où la forme annoncée pour T.

Proposition 29.

Soit $u \in \mathcal{L}(E)$ et $A \in M_n(\mathbb{K})$ une matrice représentant u dans une certaine base de E. Alors A est trigonalisable si, et seulement si, u est trigonalisable.

Démonstration.

u est trigonalisable si, et seulement si, il existe une matrice T triangulaire représentant u. Or A et T représentent toutes deux u si, et seulement si, A et T sont semblables. Donc u est trigonalisable si, et seulement si, A est trigonalisable.

Corollaire 8.

Soit $A \in M_n(\mathbb{K})$. Alors A est trigonalisable si, et seulement si, l'endomorphisme de \mathbb{K}^n canoniquement associé à A est trigonalisable.

Démonstration.

On applique la proposition précédente au cas particulier : $E = \mathbb{K}^n$, $A = (a_{i,j}) \in M_n(\mathbb{K})$ et

 $u \in \mathcal{L}(\mathbb{K}^n)$ tel que :

$$u: (x_1, ..., x_n) \mapsto \left(\sum_{j=1}^n a_{1,j} x_j, ..., \sum_{j=1}^n a_{n,j} x_j\right).$$

4. Trigonalisation

Théorème 6.) Théorème de trigonalisation

- Soit $A \in M_n(\mathbb{K})$. Alors A est trigonalisable si, et seulement si, son polynôme caractéristique χ_A est scindé.
- Soit $u \in \mathcal{L}(E)$. Alors u est trigonalisable si, et seulement si, son polynôme caractéristique χ_u est scindé.

Démonstration.

On démontre la partie concernant les matrices. Pour les endomorphismes, il suffit d'utiliser l'équivalence $u \in \mathcal{L}(E)$ est trigonalisable si, et seulement si, une matrice représentant u est trigonalisable et de remarquer que u et sa matrice ont le même polynôme caractéristique.

- (\Rightarrow). Si A est trigonalisable, alors il existe une matrice triangulaire supérieure T semblable à A. Par suite on a $\chi_A = \chi_T$ et le polynôme caractéristique d'une matrice triangulaire est scindé. Donc χ_A est scindé.
- (\(\Lefta\)). On considère la propriété

$$\mathcal{P}_n: \ "\forall A \in M_n(\mathbb{K}), \ \chi_A$$
est scindé $\ \Rightarrow \ A$ est trigonalisable."

Montrons que, pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n est vraie par récurrence $n \in \mathbb{N}^*$.

- *Initialisation*. Pour n = 1, la propriété \mathcal{P}_0 est triviale : toute matrice de dimension 1 est triangulaire!
- Hérédité. Soit $n \in \mathbb{N}^*$. On suppose la propriété \mathcal{P}_n vraie.

Soit $A \in M_{n+1}(\mathbb{K})$. On suppose que on polynôme caractéristique χ_A est scindé. Par suite, χ_A admet au moins une racine λ qui est valeur propre de A. Soit $C_1 \in M_{n+1,1}(\mathbb{K})$ un vecteur propre de A associé à λ . On complète C_1 en une base $\mathcal{B} = \{C_1, C_2, ..., C_{n+1}\}$ de $M_{n+1,1}(\mathbb{K})$. Alors, en posant $Q = \begin{pmatrix} C_1 & | & ... & | & C_{n+1} \end{pmatrix}$ i.e. Q est la matrice de passage de la base canonique de $M_{n+1,1}(\mathbb{K})$ vers \mathcal{B} , on a

$$Q^{-1}AQ = \left(\begin{array}{c|c} \lambda & B \\ \hline 0 & C \end{array}\right).$$

où $B \in M_{1,n}(\mathbb{K})$ et $C \in M_n(\mathbb{K})$.

Alors on a:

$$\chi_A = \chi_{Q^{-1}AQ} = (X - \lambda)\chi_C$$

Or comme χ_A est scindé et $\chi_C|\chi_A$, alors χ_C est scindé et ainsi, par hypothèse de récurrence, C est trigonalisable. Par suite, il existe $T' \in M_n(\mathbb{K})$ triangulaire et $R \in$

 $GL_n(\mathbb{K})$ tels que $C = RT'R^{-1}$. Alors, si on pose :

$$P' = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & R \end{array}\right) \quad \text{ et } \quad P = QP'$$

on obtient:

$$P^{-1}AP = P'^{-1}Q^{-1}AQP' = P'^{-1}\left(\begin{array}{c|c}\lambda & B\\\hline 0 & C\end{array}\right)P' = \left(\begin{array}{c|c}\lambda & BR\\\hline 0 & T'\end{array}\right).$$

Donc $T=P^{-1}AP$ est triangulaire ; d'où A est trigonalisable. Par suite, \mathcal{P}_{n+1} est vraie. Ce qui achève la récurrence.

Corollaire 9.

- Toute matrice de $M_n(\mathbb{C})$ est trigonalisable.
- Si $\mathbb{K} = \mathbb{C}$, tout endomorphisme de E est trigonalisable.

Démonstration

Soit A une matrice de $\mathbb{M}_n(\mathbb{C})$. Alors son polynôme caractéristique χ_A appartient à $\mathbb{C}[X]$ donc d'après le théorème de D'Alembert-Gauss, χ_A est scindé. Il en résulte que A est trigonalisable d'après le théorème précédent.

Même raisonnement pour un endomorphisme.

Proposition 30.

Soit $u \in \mathcal{L}(E)$ avec $\mathrm{Sp}(u) = \{\lambda_1,...,\lambda_k\}$ avec $\lambda_1,...,\lambda_k$ deux à deux distincts. Si u est trigonalisable, alors :

$$\operatorname{Tr}(u) = \sum_{i=1}^{k} m(\lambda_i) \lambda_i$$
 et $\det(u) = \prod_{i=1}^{i} \lambda_k^{m(\lambda_i)}$.

Démonstration.

On suppose u trigonalisable. Alors il existe T triangulaire qui représente u et T est de la forme :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & \dots & \dots & * \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & \lambda_1 & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \lambda_k & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & * \\ 0 & \dots & \dots & \dots & 0 & \lambda_k \end{pmatrix}$$

d'où le résultat.

Méthode: Trigonalisation d'une matrice.

• On calcule le polynôme caractéristique de la matrice. S'il est **scindé**, la matrice est trigonalisable, on continue.

• On détermine les sous-espaces propres ; on compare la dimension de chacun de ces sous-espaces et la multiplicité des valeurs propres correspondantes. Si chaque dimension est égale à la multiplicité correspondante, on diagonalise ; sinon, on doit trigonaliser.

Dans le cas général, il n'y a pas de méthode à connaître; mais nous allons voir comment trigonaliser une matrice A dans les différents cas possibles en dimension 3 sur des exemples. Dans la suite, u désignera l'endomorphisme canonique de \mathbb{K}^3 associé à A.

Méthode: Trigonalisation d'une matrice de $M_3(\mathbb{K})$ non diagonalisable.

 $1er\ cas$: Deux valeurs propres distinctes de multiplicité 1 et 2 et chaque sous-espace propre de dimension 1.

Exemple représentatif :

$$A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ 3 & -2 & 0 \end{pmatrix}$$

On a $\chi_A = (X-1)(X-2)^2$ et les sous-espaces propres sont :

$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right) \text{ et } E_2(A) = \operatorname{Vect}\left(\begin{pmatrix} 0\\1\\-1 \end{pmatrix}\right)$$

- On forme une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{K}^3 en prenant $e_1 = (1, 1, 1)$ et $e_2 = (0, 1, -1)$ et en choisissant e_3 de manière à compléter en une base la famille e_1, e_2 .
- On obtient alors $A = PTP^{-1}$ où :

$$T = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 0 & * \\ 0 & 2 & * \\ 0 & 0 & 2 \end{pmatrix}$$

et P est formé des vecteurs e_1, e_2, e_3 mis en colonne.

Par exemple: On choisit $e_3 = e_1 \wedge e_2 = (-2, 1, 1)$ et on a :

$$u(e_3) = {t \choose A {-2 \choose 1 \choose 1}} = (-8, 4, -8) = -4e_1 + 6e_2 + 2e_3.$$

d'où, dans ce cas,
$$T = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 2 & 6 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$

Méthode: Trigonalisation d'une matrice de $M_3(\mathbb{K})$ non diagonalisable.

2eme cas : Une valeur propre triple et le sous-espace propre associé de dimension 2.

Exemple représentatif :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

On a $\chi_A = (X-1)^3$ et le sous-espace propre associé à 1 est :

$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}\right)$$

- On forme une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{K}^3 en prenant $e_1 = (1, 0, 0)$ et $e_2 = (0, -1, 1)$ et en choisissant e_3 de manière à compléter en une base la famille e_1, e_2 .
- On obtient alors $A = PTP^{-1}$ où :

$$T = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

et P est formé des vecteurs e_1,e_2,e_3 mis en colonne.

Par exemple: On choisit $e_3 = (0, 1, 1)$ et on a $u(e_3) = (8, 4, -8) = 2e_2 + 1.e_3$. d'où, dans

ce cas,
$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Méthode : Trigonalisation d'une matrice de $M_3(\mathbb{K})$ non diagonalisable.

3eme cas : Une valeur propre triple λ et le sous-espace propre associé de dimension 1.

On utilise ici la méthode de réduction de Jordan (par souci de simplicité) :

On cherche une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{K}^3 telle que :

- On cherche $e_3 \notin \operatorname{Ker} ((u \lambda \operatorname{Id}_E)^2)$;
- on pose $e_2 = u(e_3) \lambda e_3$; (d'où $u(e_3) = e_2 + \lambda e_3$);
- on pose $e_1 = u(e_2) \lambda e_2$; (d'où $u(e_2) = e_1 + \lambda e_2$).

Et on prouvera plus tard qu'on a nécessairement $u(e_1) = \lambda e_1$ grâce au théorème de Cayley-

Hamilton. Ainsi, on obtient $A = PTP^{-1}$ où :

$$T = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

et P est formé des vecteurs e_1, e_2, e_3 mis en colonne.

Exercice 18.

Trigonaliser les matrices suivantes :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -4 & 1 \\ 2 & -1 & -2 \end{pmatrix} \quad B = \begin{pmatrix} \frac{1}{2} + i & \frac{1}{2} & -i \\ -\frac{1}{2} & -\frac{1}{2} + i & -i \\ 0 & 0 & i \end{pmatrix} C = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

Correction.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1}$$

$$B = \begin{pmatrix} -i & -i & 0 \\ i & -i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & 1 & 0 \\ 0 & i & 1 \\ 0 & 0 & i \end{pmatrix} \begin{pmatrix} -i & -i & 0 \\ i & -i & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1}$$

5. Endomorphismes nilpotents et matrices nilpotentes

On rappelle ici la notion de nilpotence évoquée dans le chapitre Structures algébriques usuelles :

Définition 18. Endomorphisme nilpotent/Matrice nilpotente

- Soit $u \in \mathcal{L}(E)$. On dit que u est **nilpotent** s'il existe $k \in \mathbb{N}^*$ tel que $u^k = 0$. On appelle alors **indice de nilpotence** le plus petit entier $p \in \mathbb{N}^*$ tel que $u^p = 0$.
- Soit $A \in M_n(\mathbb{K})$. On dit que A est **nilpotente** s'il existe $k \in \mathbb{N}^*$ tel que $A^k = 0_n$. On appelle alors **indice de nilpotence** le plus petit entier $p \in \mathbb{N}^*$ tel que $A^p = 0_n$.

Exemple 5.

Une matrice triangulaire dont la diagonale est composée de 0 - on appelle ce type de matrices des matrices triangulaires **strictes** - est nilpotente.

Proposition 31.

Soit $u \in \mathcal{L}(E)$. On a équivalence entre les assertions :

- i) u est nilpotent;
- ii) $\chi_u = X^n \text{ (où } n = \dim(E));$

On a le même résultat pour $A \in M_n(\mathbb{K})$.

Démonstration.

• i) \Rightarrow ii). On suppose u nilpotent d'indice p. Soit $A \in M_n(\mathbb{K})$ une matrice représentant u dans une certaine base \mathcal{B} de E. La matrice A est trigonalisable dans $M_n(\mathbb{C})$. Soit $\lambda \in \mathbb{C}$ une valeur propre de A et $X \in M_{n,1}(\mathbb{C})$ un vecteur propre associé. Alors on a, pour tout $k \in \mathbb{N}$:

$$A^k X = \lambda^k X$$
.

Or $A^p=0$ donc $\lambda^p X=0$ avec $X\neq 0$, d'où $\lambda^p=0$. Ainsi, $\lambda=0$, donc 0 est la seule valeur propre de A. A étant trigonalisable, son polynôme caractéristique est donc $\chi_A=X^n$. Par suite, $\chi_u=\chi_A=X^n$.

• ii) \Rightarrow i). On suppose $\chi_u = X^n$. (On peut conclure directement avec le théorème de Cayley-Hamilton mais on n'a pas besoin d'utiliser un si puissant résultat ici). Comme χ_u est scindé, u est trigonalisable et donc il existe une base $\mathcal B$ dans laquelle la matrice T de u est triangulaire stricte car 0 est la seule valeur propre de u. Or T est nilpotente car triangulaire stricte, donc il existe $k \geq 1$ tel que $\mathrm{Mat}_{\mathcal B}(u^k) = T^k = 0_n$. Ainsi, $u^k = 0$.

Corollaire 10.

- Soit $u \in \mathcal{L}(E)$. Alors u est nilpotent si, et seulement si, u est trigonalisable et $Sp(u) = \{0\}$.
- Soit $A \in M_n(\mathbb{K})$. Alors A est nilpotente si, et seulement si, A est trigonalisable et $Sp(A) = \{0\}$.

Démonstration

On a u est nilpotent si, et seulement si, $\chi_u = X^n$ si, et seulement si, u est trigonalisable et son unique valeur propre est 0.

Proposition 32.

Soit $u \in \mathcal{L}(E)$. Si u est nilpotent d'indice p, alors :

- pour tout $x \in E$ tel que $u^{p-1}(x) \neq 0_E$, la famille $(x, u(x), ..., u^{p-1}(x))$ est libre;
- $-p \le n = \dim(E)$.

Démonstration.

— Soit $a_0,...,a_{p-1}\in\mathbb{K}$ tels que $\sum_{i=0}^{p-1}a_iu^i(x)=0_E.$ On a :

$$0_E = u^{p-1} (\sum_{i=0}^{p-1} a_i u^i(x)) = a_0 u^{p-1}(x).$$

donc $a_0 = 0$ car $u^{p-1}(x) \neq 0_E$, puis, on a :

$$0_E = u^{p-2} (\sum_{i=1}^{p-1} a_i u^i(x)) = a_1 u^{p-1}(x).$$

d'où $a_1=0.$ On continue ainsi de proche en proche pour trouver finalement :

$$a_0 = a_1 = \dots = a_{p-1} = 0.$$

Donc $(x, u(x), ..., u^{p-1}(x))$ est une famille libre.

— Comme p est le plus petit entier de \mathbb{N}^* tel que $u^p = 0$, alors $u^{p-1} \neq 0$. Par suite, il existe $x \neq 0_E$ tel que $u^{p-1}(x) \neq 0_E$. Ainsi, en utilisant le point précédent, la famille $(x, u(x), ..., u^{p-1}(x))$ est une famille libre de E de p vecteurs, par suite, $p \leq \dim(E)$.