
Chapitre IX

Séries entières

Table des matières
Partie A : Définitions et généralités sur les séries entières 2

1. Séries entières . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Rayon de convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Calcul du rayon de convergence d’une série entière . . . . . . . . . . . . . . . . . . . . . . . . 6

Partie B : Propriétés des séries entières 16
1. Opérations sur les séries entières . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2. Régularité d’une série entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3. Dérivée de la somme d’une série entière réelle . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4. Primitive de la somme d’une série entière réelle . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Partie C : Développements en série entière 34
1. Développement en série entière d’une fonction d’une variable réelle . . . . . . . . . . . . . . . 34
2. Développements en série entière usuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Exercices et problèmes 42

1



Dans ce chapitre, K désigne le corps R ou le corps C et (an)n∈N, (bn)n∈N désignent, sauf mention
contraire, des suites à valeurs dans K.

Définitions et généralités sur les séries entières
Partie APartie A

1. Séries entières

Définition 1.Définition 1. gSérie entièreSérie entière

Soit (an)n∈N une suite à valeurs dans K. On appelle série entière associée à la suite (an)n∈N,
la série de fonction

∑
fn où, pour n ∈ N, la fonction fn : C → C est définie par :

fn : z 7→ anz
n.

On notera (abusivement)
∑

anz
n la série entière associée à la suite (an)n∈N.

Exemple 1.Exemple 1.

On connaît déjà plusieurs séries entières :
— la série géométrique

∑
zn ;

— la série de somme exponentielle
∑ zn

n!
.

Exercice 1.Exercice 1.

Soit (an)n∈N une suite de nombres complexes. Montrer que
∑

anz
2n est une série entière.

Correction.

Attention ! Il y a un piège !
∑

anz
2n est bien une série entière : il s’agit de la série entière

∑
bnz

n

où, pour n ∈ N, {
bn = an/2 si n est pair
bn = 0 si n est impair

Définition 2.Définition 2. gSomme et domaine de convergenceSomme et domaine de convergence

Soit
∑

anz
n une série entière.

— On note D et DR et on appelle respectivement domaine de convergence et domaine
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réel de convergence de la série entière
∑

anz
n les ensembles :

D = {z ∈ C |
∑

anz
n converge } et DR = {x ∈ R |

∑
anx

n converge }.

— On appelle somme de la série entière
∑

anz
n la fonction somme S : D → C de la

série, i.e.

S : z 7→
+∞∑
n=0

anz
n.

Remarque 1.Remarque 1.

Par définition, le domaine de convergence d’une série entière
∑

anz
n coïncide avec le domaine

de définition de sa somme S. Ainsi, comme on l’a vu dans le Chapitre séries de fonctions, le
domaine de convergence de la série entière

∑
anz

n est le plus grand ensemble sur lequel la série
de fonctions

∑
anz

n converge simplement.

Question 1.Question 1.

Que dire de la somme d’une série entière associée à une suite stationnaire en 0 ?

Réponse.

Réponse : Soit (an)n∈N est une suite stationnaire en 0 ; on note N = minn∈N(an = 0) et
P =

∑N−1
n=0 anX

n ∈ C[X]. Alors la série
∑

anz
n converge pour tout z ∈ C. En effet, la suite

des sommes partielles est stationnaire en
∑N−1

n=0 anz
n = P (z). De plus, pour la même raison, la

somme S de la série entière est :
S : z 7→ P (z).

On peut donc conclure que la somme d’une série entière associée à une suite stationnaire en 0 est
une fonction polynomiale !

2. Rayon de convergence

a. Lemme d’Abel

Théorème 1.Théorème 1. gLemme d’AbelLemme d’Abel

Soit (an)n∈N une suite à valeurs dans K et z0 ∈ C∗. Si la suite (anz
n
0 )n∈N est bornée, alors, pour

tout z ∈ C tel que |z| < |z0|, la série
∑

anz
n est absolument convergente.
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Démonstration.

On suppose que suite (anz
n
0 )n∈N est bornée. Alors il existe M > 0 tel que |anzn0 | ≤ M .

Soit z ∈ C tel que |z| < |z0|. Alors, pour tout n ∈ N, on a :

|anzn| = |anzn0 |.
(

z

z0

)n

≤ M

(
z

z0

)n

,

qui est le terme général d’une série géométrique de raison strictement inférieure à 1 car |z| < |z0|.
Par suite,

∑
|anzn| est convergente.

b. Définition et propriétés du rayon de convergence

Lemme 1.Lemme 1.

Soit (an)n∈N une suite à valeurs dans K. L’ensemble {r ∈ R+ | (|an|rn)n∈N est bornée} est un
intervalle non vide de R.

Démonstration.

On note I = {r ∈ R+ | (|an|rn)n∈N est bornée}. Alors I contient 0 car (|an|0n)n∈N est bornée.
De plus, si r ∈ I, alors, pour tout s ∈ [0, r], s ∈ I car, pour tout n ∈ N, |an|sn ≤ |an|rn ; donc
(|an|sn)n∈N est bornée.
Il en résulte que I est un intervalle de la forme [0, a).

Ce lemme justifie la définition suivante :

Définition 3.Définition 3. gRayon de convergenceRayon de convergence

Soit
∑

anz
n une série entière.

i) On appelle rayon de convergence et on note R la borne supérieure de l’intervalle
I = {r ∈ R+ | (|an|rn)n∈N est bornée} i.e.

R = sup{r ∈ R+ | (|an|rn)n∈N est bornée}.

on convient que R = +∞ si l’intervalle I n’est pas majoré.
ii) On appelle disque ouvert de convergence de la série entière

∑
anz

n l’ensemble
D(0, R) = {z ∈ C | |z| < R}.

iii) Si (an)n∈N est à valeurs dans R, On appelle intervalle ouvert de convergence de la
série entière

∑
anx

n l’intervalle ]−R,R[.

Proposition 1.Proposition 1.

Soit
∑

anz
n une série entière, R son rayon de convergence et z ∈ C.

— Si |z| < R, alors la série numérique
∑

anz
n converge absolument.

— Si |z| > R, alors la série numérique
∑

anz
n diverge grossièrement.
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Démonstration.

— On suppose |z| < R. Comme R = sup{r ∈ R+ | (|an|rn)n∈N est bornée}, alors il existe
r0 ∈ {r ∈ R+ | (|an|rn)n∈N est bornée} tel que |z| < r0 < R.
Par conséquent, la suite (anr

n
0 )n∈N étant bornée, d’après le lemme d’Abel, la série

∑
anz

n

est absolument convergente.
— On suppose |z| > R. Alors la suite (anz

n)n∈N n’est pas bornée et donc ne converge pas
vers 0. Ainsi, la série

∑
anz

n diverge grossièrement.

Remarque 2.Remarque 2.

Si |z| = R, on ne peut, a priori, rien dire ! Il faut étudier la série dans ce cas.

Proposition 2.Proposition 2.

Soit
∑

anz
n une série entière, R son rayon de convergence et D son domaine de convergence.

Alors on a :

D(0, R) = {z ∈ C | |z| < R} ⊂ D ⊂ D(0, R) = {z ∈ C | |z| ≤ R}.

Démonstration.

• Si z ∈ D(0, R) alors |z| < R. Par suite, d’après la proposition précédente,
∑

anz
n converge

absolument et donc converge. D’où z ∈ D.
Il en résulte que D(0, R) ⊂ D.

• Si z /∈ D(0, R) alors |z| > R. Par suite, d’après la proposition précédente,
∑

anz
n diverge

grossièrement. D’où z /∈ D.
Ainsi D(0, R)c ⊂ Dc et donc D ⊂ D(0, R).

Exemple 2.Exemple 2.

— Pour la série entière
∑

zn, le rayon de convergence est 1 et son domaine de convergence
est D = D(0, 1).

On a
{r ∈ R+ | (rn)n∈N est bornée} = [0, 1].

Donc le rayon de convergence R de
∑

zn est :

R = sup[0, 1] = 1.

De plus, si |z| = 1, |zn| = |z|n = 1 ↛
n→+∞

0, donc
∑

zn diverge grossièrement.

Il en résulte que D = D(0, 1).
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— Pour la série entière
∑

n≥1

1

n2
zn, le rayon de convergence est 1 et son domaine de conver-

gence est D = D(0, 1).

On a
{r ∈ R+ | ( 1

n2
rn)n∈N est bornée} = [0, 1].

Donc le rayon de convergence R de
∑

n≥1

1

n2
zn est :

R = sup[0, 1] = 1.

De plus, si |z| = 1, | 1
n2 z

n| = 1
n2 donc, d’après le critère de Riemann,

∑
zn

n2 converge
absolument.
Il en résulte que D = D(0, 1).

Exercice 2.Exercice 2.

Déterminer le rayon de convergence et le domaine de convergence des séries entières
∑ zn

n!
et∑

n!zn.

Correction.

1. On a
{r ∈ R+ | ( 1

n!
rn)n∈N est bornée} = [0,+∞[.

car, pour tout r ∈ R, 1
n!r

n est le terme général d’une série convergente - donc converge vers
0 et donc est une suite bornée.
Ainsi le rayon de convergence R de

∑ 1

n!
zn est :

R = +∞.

Il en résulte que D = C.

2. On a
{r ∈ R+ | (n!rn)n∈N est bornée} = {0}.

En effet, pour 0 < r < 1, à partir du rang N = E(r) + 1, il existe C > 0 tel que pour tout
n ≥ N , n!rn ≥ Cn −−−−−→

n→+∞
+∞ (on peut prendre C = (N − 1)!rN )) donc pour tout r > 0,

la suite (n!rn)n∈N n’est pas bornée (le cas r ≥ 1 est immédiat - le faire quand même pour
vérifier que c’est bien immédiat !).
Donc le rayon de convergence R de

∑
n!zn est :

R = sup{0} = 0.

Il en résulte que D = {0}.
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3. Calcul du rayon de convergence d’une série entière

a. Caractérisation du rayon de convergence

Proposition 3.Proposition 3.

Soit
∑

anz
n une série entière et R son rayon de convergence. Alors on a les égalités suivantes :

— R = sup { |z| | (anzn)n∈N est bornée} ;
— R = sup { |z| | (anzn)n∈N converge} ;

— R = sup
{
|z| |

∑
anz

n converge
}

;

— R = sup
{
|z| |

∑
anz

n converge absolument
}

.

Démonstration.

On considère les ensembles suivants :
— I1 = { |z| | (anzn)n∈N est bornée} ;
— I2 = { |z| | (anzn)n∈N converge} ;

— I3 =
{
|z| |

∑
anz

n converge
}

;

— I4 =
{
|z| |

∑
anz

n converge absolument
}

.
Pour toute suite (un)n∈N ∈ Cn, on a :∑

un converge absolument ⇒
∑

un converge ⇒ (un)n∈N converge ⇒ (un)n∈N est bornée.

Par suite, on a la chaîne d’inclusion :

I4 ⊂ I3 ⊂ I2 ⊂ I1.

De plus, on remarque que I1 = {r ∈ R+ | (|an|rn)n∈N est bornée}, donc, d’après le lemme 1,
I1 est un intervalle non vide de R+ qui contient 0 et par définition du rayon de convergence,
R = sup I1 (potentiellement = +∞). Ainsi, on a I1 = [0, R[ ou I1 = [0, R].
Comme 0 ∈ I4, I4 est une partie non vide de R+ et donc il possède une borne supérieure R′

(potentiellement +∞ si I4 n’est pas majorée). Ainsi, comme I4 ⊂ I1, on a R′ ≤ R.
Réciproquement : soit r ∈ [0, R[. Alors, d’après la proposition 1, la série

∑
anr

n converge absolu-
ment, donc r appartient à I4 et donc r ≤ R′. Par suite, R′ est un majorant de [0, R[ d’où R ≤ R′.
Il en résulte que R′ = R.
Remarque : les inégalités précédentes ne pas rigoureuses dans le cas R = +∞, mais la preuve
reste analogue dans ce cas.
Ainsi, en utilisant la chaîne d’inclusion précédente, on obtient :

R = sup I4 ≤ sup I3 ≤ sup I2 ≤ sup I1 = R.

d’où les égalités annoncées.
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Méthode : Minoration et majoration du rayon de convergence

Étant donné une série entière
∑

anz
n de rayon de convergence R et z0 ∈ C, on a :

• la minoration R ≥ |z0|, si on est dans l’un des cas suivants :
i) la suite (anz

n
0 )n∈N est bornée ;

ii) la suite (anz
n
0 )n∈N converge ;

iii) la série
∑

anz
n
0 converge ;

iv) la série
∑

anz
n
0 converge absolument ;

• la majoration R ≤ |z0|, si on est dans l’un des cas suivants :
i) la suite (anz

n
0 )n∈N n’est pas bornée ;

ii) la série
∑

anz
n
0 diverge ;

iii) la série
∑

|anzn0 | diverge.

Exercice 3.Exercice 3.

1. Déterminer le rayon de convergence de
∑

nzn.

2. Déterminer le rayon de convergence de la série entière
∑

anz
2n en fonction de celui de∑

anz
n.

Correction.

1. On remarque tout d’abord que la suite (n1n)n∈N n’est pas bornée. Donc, comme R =
sup { |z| | (nzn)n∈N est bornée}, on a R ≤ 1.
Soit z ∈ C∗. Si |z| < 1, la suite (n|z|n)n∈N converge vers 0 par croissances comparées donc
comme R = sup { |z′| | (nz′n)n∈N converge}, on a R ≥ |z|.
Ceci étant vrai pour tout z tel que |z| < 1, on peut faire tendre |z| vers 1 dans l’inégalité
précédente, ce qui donne R ≥ 1.
Il en résulte que R = 1.

2. Notons R le rayon de convergence de la série entière
∑

anz
2n et R′ celui de

∑
anz

n.
Soit z ∈ C∗. On suppose |z| < R. Alors la suite (anz

n)n∈N est bornée et donc la suite
(|an|(

√
|z|)2n)n∈N l’est aussi. Or, on a R′ = sup

{
|z′| | (anz′2n)n∈N est bornée

}
, donc R′ ≥√

|z|. Ceci étant vrai pour tout z tel que |z| < R, on fait tendre |z| vers R et ainsi, par
continuité de la fonction racine :

R′ ≥
√
R.

Soit z ∈ C∗. On suppose |z| < R′. Alors la suite (anz
2n)n∈N est bornée et donc la suite

(an(z
2)n)n∈N l’est aussi. Or, on a R = sup { |z′| | (anz′n)n∈N est bornée}, donc R ≥ |z2| =

|z|2. Ceci étant vrai pour tout z tel que |z| < R′, on fait tendre |z| vers R′ et ainsi, par
continuité de la fonction carrée :

R ≥ R′2.

Il en résulte que R′ =
√
R.
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b. Comparaison

Proposition 4.Proposition 4. gComparaison des rayons de convergenceComparaison des rayons de convergence

Soit
∑

anz
n et

∑
bnz

n des séries entières et Ra, Rb leurs rayons de convergence respectifs. Alors
si, à partir d’un certain rang N ∈ N, on a, pour tout n ≥ N :

i) |an| ≤ |bn|, alors Ra ≥ Rb ;
ii) an = O(bn), alors Ra ≥ Rb ;
iii) an = o(bn), alors Ra ≥ Rb ;
iv) |an| ∼

n→+∞
|bn| alors Ra = Rb.

Démonstration.

i) Soit z ∈ C∗. On suppose |z| < Rb. Alors la suite (bnz
n)n∈N est bornée. Comme pour tout

n ≥ N , |an| ≤ |bn|, on a |anzn| ≤ |bnzn| donc la suite (anz
n)n∈N est bornée. Or, on a

Ra = sup { |z′| | (anz′n)n∈N est bornée}, donc Ra ≥ |z|. Ceci étant vrai pour tout z tel
que |z| < Rb, on fait tendre |z| vers Rb et ainsi :

Ra ≥ Rb.

ii) On suppose an = O(bn). Alors il existe M ≥ 0 tel que pour tout n ∈ N, |an| ≤ M |bn|. On
adpate alors la preuve précédente en remarquant que, pour un certain z ∈ C, si (bnzn)n∈N
est bornée, alors (Mbnz

n)n∈N l’est aussi.
iii) Si an = o(bn), alors an = O(bn) d’où Ra ≥ Rb ;
iv) On remarque que |an| ∼

n→+∞
|bn| implique an = O(bn) et bn = O(an). En effet, par

définition, |an| ∼
n→+∞

|bn| ⇔ an = bn + o(bn) = O(bn) +O(bn) = O(bn).

Exercice 4.Exercice 4.

1. Déterminer les rayons de convergence de
∑ 2n(1 + 5nn2)

10n(n+
√
3n+ 1)

zn et de
∑ sin( n

3n )

n+ 1
zn.

2. Déterminer le rayon de convergence de
∑

n≥1 d(n)z
n où, pour n ∈ N∗, d(n) = #{d ∈J1, nK | d|n}.

Correction.

1. On a :
2n(1 + 5nn2)

10n(n+
√
3n+ 1)

∼
n→+∞

n

Or on a prouvé précédemment que
∑

nzn a pour rayon de convergence 1 donc, par com-

paraison, le rayon de convergence de
∑ 2n(1 + 5nn2)

10n(n+
√
3n+ 1)

zn est égal à 1.
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Comme sin(x) ∼
x→0

x, on a :
sin( n

3n )

n+ 1
∼

n→+∞

1

3n

Or le rayon de convergence de
∑

1
3n z

n est égal à 3 : en effet, pour z ∈ C, la suite (( z3 )
n)n∈N

est bornée si, et seulement si |z| ≤ 3. Ainsi, par comparaison, le rayon de convergence de∑ sin( n
3n )

n+ 1
zn est égal à 3.

2. Pour n ∈ N∗, on remarque que 1 ≤ d(n) ≤ n. Or les rayons de convergence de
∑

zn et de∑
nzn sont tous deux égaux à 1, d’où, si on note R le rayon de convergence de

∑
n≥1 d(n)z

n,
on obtient 1 ≥ R ≥ 1 et ainsi R = 1

c. Utilisation de la règle de D’Alembert

Théorème 2.Théorème 2. gRègle de D’Alembert pour les séries entièresRègle de D’Alembert pour les séries entières

Soit
∑

anz
n une série entière de rayon de convergence R telle que, à partir d’un certain rang

N ∈ N, pour tout n ≥ N , an 6= 0. S’il existe ℓ ∈ [0,+∞[∪{+∞} tel que :∣∣∣∣an+1

an

∣∣∣∣ −−−−−→n→+∞
ℓ,

alors on a :

R =
1

ℓ
=


+∞ si ℓ = 0;
1
ℓ si ℓ ∈ ]0,+∞[;

0 si ℓ = +∞.

Démonstration.

Soit z ∈ C. On applique le critère de D’Alembert à la série de terme général un = |anzn|. Alors
on a, pour tout n ≥ N ,

un+1

un
=

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ = ∣∣∣∣an+1

an

∣∣∣∣ .|z|.
Par suite, si

∣∣∣∣an+1

an

∣∣∣∣ −−−−−→n→+∞
ℓ où :

— ℓ ∈ R∗
+, alors un+1

un
−−−−−→
n→+∞

ℓ|z|. Ainsi, d’après le critère de D’Alembert, si |z| < 1
ℓ ,
∑

un

converge et si |z| > 1
ℓ ,
∑

un diverge. Par suite, R = 1
ℓ .

— ℓ = +∞, alors un+1

un
−−−−−→
n→+∞

+∞. Ainsi, d’après le critère de D’Alembert, pour tout
z ∈ C∗,

∑
un diverge donc R = 0.

— ℓ = 0, alors un+1

un
−−−−−→
n→+∞

0. Ainsi, d’après le critère de D’Alembert, pour tout z ∈ C∗,∑
un converge. Par suite, R = +∞.
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Remarque 3.Remarque 3.

Attention le critère précédent n’est valable que si (an)n∈N est différente de 0 à partir d’un certain
rang !
Ainsi, pour une série entière du type

∑
anz

φ(n) avec φ : N → N strictement croissante, on
appliquera directement la règle de D’Alembert sur la série (tout court)

∑
anz

φ(n) i.e. on étudie
la limite de ∣∣∣∣an+1z

φ(n+1)

anzφ(n)

∣∣∣∣ = ∣∣∣∣an+1

an

∣∣∣∣ .|zφ(n+1)−φ(n)|,

en fonction des valeurs de z ∈ C∗ afin de majorer et minorer le rayon de convergence de la série
entière.

Exercice 5.Exercice 5.

1. Déterminer les rayons de convergence des séries entières

∑
n≥1

nαzn où α ∈ R;
∑ nn

n!
zn;

∑(
4n

2n+ 1

)
zn;

∑
n≥n0

P (n)

Q(n)
zn où P,Q ∈ K[X].

2. Déterminer les rayons de convergence des séries entières :∑
n!z2n

∑
n!zn

2 ∑
nnz(

3n
n ).

Correction.

1. Pour cette question, on remarque que les séries entières ne sont pas lacunaires et que les
suites (an)n∈N associées sont non nuls (à partir d’un certain rang). On peut donc appliquer
le critère de D’Alembert pour les séries entières :
— Ici, an = nα pour n ≥ 1 et a0 = 0. Ainsi, à partir du rang 1, on a, par continuité de la

fonction x 7→ xα en 1 : ∣∣∣∣an+1

an

∣∣∣∣ = (n+ 1

n

)α

−−−−−→
n→+∞

1α = 1

Ainsi, le rayon de convergence R de
∑

n≥1 n
αzn est R = 1

1 = 1.

— Ici, an = nn

n! pour n ≥ 0. Ainsi, comme pour tout x ∈ R, (1 + x
n )

n −−−−−→
n→+∞

ex, on a :∣∣∣∣an+1

an

∣∣∣∣ = (n+ 1

n

)n

−−−−−→
n→+∞

e1 = e

Ainsi, le rayon de convergence R de
∑

nn

n! z
n est R = 1

e .

— Ici, an =

(
4n

2n+ 1

)
pour n ≥ 0. Ainsi, on a :∣∣∣∣an+1

an

∣∣∣∣ = (4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

(2n+ 3)(2n+ 2)(2n+ 1)(2n)
∼

n→+∞

44n4n4

24n4
= 24 −−−−−→

n→+∞
24 = 16
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Ainsi, le rayon de convergence R de
∑(

4n

2n+ 1

)
zn est R = 1

16 .

— On suppose que P,Q sont des polynômes non nuls. Ici, an = P (n)
Q(n) pour n ≥ n0 où

n0 = E(max{x ∈ R+ | Q(x) = 0}) + 1 si Q admet des racines réelles positives et n0 = 0
sinon (pour s’assurer qu’on ne divise par par 0 ; dans le cas où Q possède des racines
positives, ce ”max” existe bien car Q étant un polynôme non nul, l’ensemble de ses
racines est fini) et an = 0 pour tout n < n0.
On va cette fois utiliser une comparaison avec la première série entière de la question
pour déterminer le rayon de convergence :
Comme P,Q sont non nuls, il existe p, q ∈ N et des coefficients αi, βi ∈ K tels que
P =

∑p
i=0 αiX

i et Q =
∑p

i=0 βiX
i avec αp 6= 0 et βq 6= 0. Par suite, on a, pour tout

n ≥ n0 :
P (n)

Q(n)
∼

n→+∞

αpn
p

βqnq
=

αp

βq
np−q

Or, pour α = p − q ∈ R, la série entière
∑

n≥1 n
αzn possède un rayon de convergence

égal à 1, donc, par comparaison, le rayon de convergence de
∑

n≥n0

P (n)
Q(n)z

n est égal à 1.

2. Les séries entières de cette question sont lacunaires, on ne peut donc pas appliquer le critère
de D’Alembert pour les séries entières. On se rabat donc sur le critère de D’Alembert... tout
court !
— Soit z ∈ C∗. On pose, pour n ∈ N, un = |n!z2n| = n!|z|2n > 0. On peut donc appliquer

la règle de D’Alembert à la suite (un)n∈N. On a :

un+1

un
= (n+ 1)|z|2 −−−−−→

n→+∞
+∞” > 1”

Ainsi, d’après la règle de D’Alembert,
∑

un diverge.
Par suite, pour tout z ∈ C∗,

∑
n!zn ne converge pas absolument. Or le rayon R de la

série entière vérifie R = sup{|z| |
∑

n!zn converge absolument}, donc R = 0.

— Soit z ∈ C∗. On pose, pour n ∈ N, un = |n!zn2 | = n!|z|n2

> 0. On peut donc appliquer
la règle de D’Alembert à la suite (un)n∈N. On a :

un+1

un
= (n+ 1)|z|2n+1 −−−−−→

n→+∞

{
+∞” > 1” si |z| ≥ 1

0 < 1 si |z| < 1

Donc, d’après la règle de D’Alembert, la série numérique
∑

n!zn
2 converge absolument

si, et seulement si, |z| < 1.
Il en résulte que R = 1 car R = sup{|z| |

∑
n!zn

2 converge absolument}.

— Soit z ∈ C∗. On pose, pour n ∈ N, un = |nnz(
3n
n )| = nn|z|(

3n
n ) > 0. On peut donc

appliquer la règle de D’Alembert à la suite (un)n∈N. On remarque que, comme n ≤
E( 3n2 ), on a

(
3n
1

)
≤
(
3n
n

)
et donc :

(
3n+ 3

n+ 1

)
−
(
3n

n

)
=

(
3n

n

)3
(3n+ 2)(3n+ 1)

(2n+ 2)(2n+ 1)︸ ︷︷ ︸
≥1

−1

 ≥
(
3n

1

)
× 2 = 6n −−−−−→

n→+∞
+∞

12



et ainsi,

un+1

un
= (n+ 1)

(
n+ 1

n

)n

|z|(
3n+3
n+1 )−(

3n
n ) −−−−−→

n→+∞

{
+∞” > 1” si |z| ≥ 1

0 < 1 si |z| < 1

Donc, d’après la règle de D’Alembert, la série numérique
∑

nnz(
3n
n ) converge absolument

si, et seulement si, |z| < 1.
Il en résulte que R = 1 car R = sup{|z| |

∑
nnz(

3n
n ) converge absolument}.

Exercice 6.Exercice 6. gApparté : Transformée d’AbelApparté : Transformée d’Abel

Soit (an)n∈N et (bn)n∈N deux suites à valeurs dans K. On considère les séries
∑

anbn et
∑

an.
On note (Sn)n∈N la suite de ses sommes partielles de

∑
anbn et (An)n∈N celle de

∑
an.

1. Montrer que, pour tout N ∈ N,

SN = ANbN −
N−1∑
n=0

An(bn+1 − bn).

Cette identité est appelée transformée d’Abel des sommes partielles de la série
∑

anbn.

2. En déduire le critère d’Abel : si
• (An)n∈N est bornée ;
• bn −−−−−→

n→+∞
0 et

•
∑

(bn+1 − bn) est absolument convergente,
alors la série

∑
anbn converge.

3. Montrer le critère des séries alternées en utilisant le critère d’Abel.

Correction.

1. On pose S−1 = 0 et A−1 = 0. Soit N ∈ N On remarque que, pour tout n ∈ N, an =

13



An −An−1, d’où on obtient :

SN =

N∑
n=0

anbn

=

N∑
n=0

Anbn −
N∑

n=0

An−1bn

=

N∑
n=0

Anbn −
N−1∑
n=−1

Anbn+1

= ANbN +

N−1∑
n=0

An(bn − bn+1)−A−1b0

= ANbN −
N−1∑
n=0

An(bn+1 − bn).

Remarque : la transformation d’Abel est l’analogue pour les suites de l’intégration par parties
pour les fonctions de la variable réelle ; en effet,
— prendre la somme partielle de la série associée à une suite est l’analogue de la primiti-

vation pour une fonction,
— prendre la différence de deux termes successifs d’une suite est l’analogue de la dérivation

pour une fonction.
2. Supposons les hypothèses vérifiées. Comme (An)n∈N est bornée, il existe M ∈ R+ tel que,

pour tout n ∈ N, |An| ≤ M . Ainsi, pour tout n ∈ N :
— |Anbn| ≤ M |bn| −−−−−→

n→+∞
0 ; donc la suite (ANbN )N∈N converge (vers 0) ;

— |An(bn+1 − bn)| ≤ M |bn+1 − bn| qui est le terme général d’une série convergente donc,
par comparaison,

∑
An(bn+1−bn) converge absolument et donc converge. Ainsi, la suite

(
∑N−1

n=0 An(bn+1 − bn))N∈N des sommes partielles de cette série converge.
Par suite, par transformation d’Abel des sommes partielles SN pour N ∈ N (question 1), la
suite (SN )N∈N s’écrit comme combinaison linéaire de suites convergentes et donc converge.
Il en résulte que la série

∑
anbn = (SN )N∈N converge.

3. Soit (un)n∈N une suite décroissante de réels positifs qui converge vers 0. Montrons que la
série

∑
(−1)nun converge.

On pose, pour n ∈ N, an = (−1)n, bn = un et An =
∑n

k=0 ak. Alors :
• On a, pour n ∈ N,

An =

n∑
k=0

(−1)k =
1− (−1)n+1

2
=

{
1 si n est pair
0 si n est impair

donc (An)n∈N est bornée par 1.
• bn = un −−−−−→

n→+∞
0.

• Pour n ∈ N, |bn+1 − bn| = un − un+1 car la suite (un)n∈N est décroissante. Par suite, la
série

∑
|bn+1 − bn| =

∑
(un − un+1) est télescopique et donc convergente car de même

nature que la suite convergente (un)n∈N. Ainsi,
∑

(bn+1 − bn) converge absolument.
Par suite, d’après le critère d’Abel, la série

∑
(−1)nun =

∑
anbn converge.

Nous avons donc (re)démontré le critère des séries alternées.
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Exercice 7.Exercice 7. gÉtude d’une série entière sur la frontière du disqueÉtude d’une série entière sur la frontière du disque

On considère la série entière
∑
n≥1

zn

n
.

1. Montrer que son rayon de convergence est 1. Que dire de la convergence en z = 1 ?

2. Soit z0 ∈ U∖{1}. En utilisant le critère d’Abel (exercice 6), montrer que
∑
n≥1

zn0
n

converge.

3. En déduire le domaine de convergence de
∑
n≥1

zn

n
.

Correction.

1. On note R le rayon de convergence de
∑
n≥1

zn

n
. Pour n ∈ N∗, on pose an = 1

n > 0. Alors

∣∣∣∣an+1

an

∣∣∣∣ = n

n+ 1
−−−−−→
n→+∞

1,

donc R = 1
1 = 1 d’après la règle de D’Alembert pour les séries entières.

Évaluer en z = 1, on obtient la série harmonique
∑
n≥1

1

n
qui est divergente.

2. On reprend les notations de l’exercice 6. Pour n ∈ N∗, on pose an = zn0 , bn = 1
n et

An =
∑n

k=0 ak. Alors :
• Comme |z0| = 1, on a, pour n ∈ N∗,

|An| =

∣∣∣∣∣
n∑

k=0

zk0

∣∣∣∣∣ = |1− zn+1
0 |

|1− z0|
≤ 1 + |z0|n+1

|1− z0|
=

2

|1− z0|

donc (An)n∈N est bornée par 2
|1−z0| .

• bn = 1
n −−−−−→

n→+∞
0.

• Pour n ∈ N∗, |bn+1 − bn| = 1
n − 1

n+1 . Par suite, la série
∑

n≥1 |bn+1 − bn| =
∑

n≥1(
1
n −

1
n+1 ) est télescopique et donc convergente car de même nature que la suite convergente
( 1n )n∈N∗ . Ainsi,

∑
n≥1(bn+1 − bn) converge absolument.

Par suite, d’après le critère d’Abel (exercice 6 question 2.), la série
∑
n≥1

zn0
n

converge.

3. On note D le domaine de convergence de la série entière. Comme R = 1, on a

D(0, 1) ⊂ D ⊂ D(0, 1)

De plus, pour z ∈ U, on a, d’après les questions 1 et 2, z ∈ D si, et seulement si, z 6= 1.
Par suite, D = D(0, 1)∖ {1}.
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Propriétés des séries entières
Partie BPartie B

1. Opérations sur les séries entières

a. Combinaisons linéaires

Proposition 5.Proposition 5. gProduit par un scalaireProduit par un scalaire

Soit
∑

anz
n une série entière et λ ∈ C∗. Alors

∑
λanz

n et
∑

anz
n ont le même rayon de

convergence.

Démonstration.

Soit z ∈ C. Comme λ 6= 0, la suite (λanz
n)n∈N est bornée si, et seulement si, (anz

n)n∈N est
bornée.
Il en résulte que

∑
λanz

n et
∑

anz
n ont même rayon de convergence.

Proposition 6.Proposition 6. gSommeSomme

Soit
∑

anz
n et

∑
bnz

n des séries entières et Ra, Rb leurs rayons de convergence respectifs. Alors
le rayon de convergence R de la série entière

∑
(an + bn)z

n vérifie :
— si Ra 6= Rb, R = min(Ra, Rb)

— si Ra = Rb, R ≥ Ra(= Rb).

Démonstration.

Soit z ∈ C. Si (anzn)n∈N et (bnzn)n∈N sont des suites bornées, alors la suite ((an + bn)z
n)n∈N est

bornée, donc |z| ≤ R. Ceci étant vrai pour tout z ∈ C tel que |z| < min(Ra, Rb), on obtient :

R ≥ min(Ra, Rb).

Supposons que Ra 6= Rb. Quitte à échanger Ra et Rb, on suppose que Ra < Rb.
Soit z ∈ C tel que Ra < |z| < Rb. Alors la suite ((an + bn)z

n)n∈N n’est pas bornée car (anz
n)n∈N

n’est pas bornée et (bnz
n)n∈N est bornée.

Remarque : pour démontrer le fait précédent, on peut utiliser la contraposée de l’assertion :
”si (un)n∈N et (vn)n∈N sont bornées, alors (un + vn)n∈N est bornée.

Ainsi, on a |z| ≥ R. Ceci étant vrai pour tout z ∈ C avec Ra < |z| < Rb, on obtient min(Ra, Rb) =
Ra ≥ R.
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Il en résulte que, si Ra 6= Rb,
R = min(Ra, Rb).

Proposition 7.Proposition 7. gSomme d’une combinaison linéaire de séries entièresSomme d’une combinaison linéaire de séries entières

Soit
∑

anz
n et

∑
bnz

n des séries entières de rayon de convergence respectifs Ra, Rb et λ, µ ∈ C.
On pose R = min(Ra, Rb). Alors, pour tout z ∈ C tel que |z| < R, on a :

+∞∑
n=0

(λan + µbn)z
n = λ

+∞∑
n=0

anz
n + µ

+∞∑
n=0

bnz
n.

Démonstration.

Les séries entières
∑

λanz
n et

∑
µbnz

n sont de rayons de convergences supérieurs à respective-
ment Ra et Rb (égaux si λ, µ 6= 0 (proposition 5) et +∞ sinon) donc, d’après la proposition 6,
la série entière

∑
(λan + µbn)z

n est de rayon de convergence supérieur à R = min(Ra, Rb). Par
suite, pour tout ω ∈ C tel que |ω| < R, ω appartient au disque ouvert de convergence de la série
entière

∑
(λan+µbn)z

n et donc, d’après la proposition 1,
∑

(λan+µbn)ω
n converge absolument

et donc converge ; de plus, comme |ω| < R ≤ Ra, et |ω| < R ≤ Rb, par un raisonnement similaire,
les séries numériques

∑
anω

n et
∑

bnω
n convergent.

Ainsi, par linéarité de la somme d’une série, on obtient, pour tout ω ∈ C avec |ω| < R :

+∞∑
n=0

(λan + µbn)ω
n = λ

+∞∑
n=0

anω
n + µ

+∞∑
n=0

bnω
n.

Exercice 8.Exercice 8.

Déterminer les rayons de convergence et la somme dans le disque ouvert de convergence des
séries entières suivantes : ∑

ch(n)zn
∑

sin(nθ)zn (où θ ∈ R).

Correction.

1. On a, par définition, pour tout x ∈ R, ch(x) = ex+e−x

2 .
La série entière

∑
enzn a pour rayon de convergence 1

e et la série entière
∑

e−nzn a pour
rayon de convergence e donc la série entière

∑
ch(n)zn a pour rayon de convergence R =

min( 1e , e) =
1
e et on a, pour tout z ∈ C tel que |z| < 1

e :

+∞∑
n=0

ch(n)zn =
1

2

+∞∑
n=0

enzn +
1

2

+∞∑
n=0

e−nzn =
1

2

1

1− ez
+

1

2

1

1− z
e

.
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2. On a, par définition, pour tout x ∈ R, sin(x) = eix−e−ix

2i .
Les séries entières

∑
einθzn et

∑
e−inθzn ont pour rayons de convergence 1 donc la série

entière
∑

sin(nθ)zn a pour rayon de convergence R ≥ 1 et on a, pour tout z ∈ C tel que
|z| < 1 :

+∞∑
n=0

sin(nθ)zn =
1

2i

+∞∑
n=0

einθzn − 1

2i

+∞∑
n=0

e−inθzn

=
1

2i

1

1− eiθz
− 1

2i

1

1− e−iθz
+∞∑
n=0

sin(nθ)zn =
sin(θ)z

1− 2 cos(θ)z + z2
.

Maintenant, déterminons exactement le rayon de convergence R de
∑

sin(nθ)zn.
Si θ ∈ 2πZ, alors sin(nθ) = 0 pout tout n ∈ N. Donc dans ce cas, R = +∞.
Supposons θ /∈ 2πZ. Comme la suite (sin(nθ))n∈N ne tend pas vers 0 alors la suite
(sin(nθ)1n)n∈N n’est pas le terme général d’une série convergente et donc R ≤ 1.
Il en résulte que R = 1.

b. Produit de Cauchy

On adapte ici la notion de produit de Cauchy au cas de séries entières :

Définition 4.Définition 4. gProduit de Cauchy de deux séries entièresProduit de Cauchy de deux séries entières

Soit
∑

anz
n et

∑
bnz

n des séries entières. On appelle produit de Cauchy des séries entières∑
anz

n et
∑

bnz
n, la série entière

∑
cnz

n où, pour n ∈ N,

cn =

n∑
k=0

akbn−k.

Proposition 8.Proposition 8. gProduit de CauchyProduit de Cauchy

Soit
∑

anz
n et

∑
bnz

n des séries entières et Ra, Rb leurs rayons de convergence respectifs. Alors
le rayon de convergence R du produit de Cauchy

∑
cnz

n des séries entières
∑

anz
n et

∑
bnz

n

vérifie R ≥ min(Ra, Rb) et on a, pour tout z ∈ C tel que |z| < min(Ra, Rb) :

+∞∑
n=0

cnz
n =

+∞∑
n=0

(
n∑

k=0

akbn−k

)
zn =

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)
.

Démonstration.

On rappelle le résultat de Sup’ suivant sur le produit de Cauchy de deux séries absolument
convergentes :
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Soit
∑

An,
∑

Bn des séries numériques et on pose, pour n ∈ N, Cn =
∑n

k=0 AkBn−k.
Si
∑

An et
∑

Bn convergent absolument, alors
∑

Cn converge absolument et on a :

+∞∑
n=0

Cn =

(
+∞∑
n=0

An

)(
+∞∑
n=0

Bn

)
.

Preuve succincte : Comme
∑

An,
∑

Bn converge absolument, les familles (An)n∈N,
(Bn)n∈N sont sommables et donc, d’après le théorème de sommation par paquets ap-
pliqués aux partitions N2 =

⊔
n∈N ∆n où ∆n = {(p, q) ∈ N2 | p+q = n} et N2 =

⊔
n∈N Hn

où Hn = {(n,m) ∈ N2}, la famille (AnBm)(n,m)∈N2 est sommable et on a :

+∞∑
n=0

Cn =
∑

(n,m)∈N2

AnBm =

(
+∞∑
n=0

An

)(
+∞∑
n=0

Bn

)
.

Le résultat précédent reste valable en supposant qu’une des deux séries converge et l’autre
converge absolument : il s’agit du théorème de Mertens (voire une preuve de ce théorème
dans le chapitre ”Séries numériques et vectorielles”.

Soit z ∈ C tel que |z| < min(Ra, Rb), d’après la proposition 1, les séries
∑

anz
n et

∑
bnz

n

convergent absolument. On pose, pour n ∈ N, An = anz
n, Bn = bnzn et Cn =

∑n
k=0 AkBn−k.

On remarque alors que, pour n ∈ N,

Cn =

n∑
k=0

akz
kbn−kz

n−k =

(
n∑

k=0

akbn−k

)
zn = cnz

n.

D’après le résultat précédent, la série
∑

Cn =
∑

cnz
n converge absolument et on a :

+∞∑
n=0

cnz
n =

+∞∑
n=0

Cn =

(
+∞∑
n=0

An

)(
+∞∑
n=0

Bn

)
=

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)

De plus, comme
∑

cnz
n converge absolument, on a R ≥ |z|. Ceci étant vrai pour tout z ∈ C avec

|z| < min(Ra, Rb), on obtient R ≥ min(Ra, Rb).

Exercice 9.Exercice 9.

Déterminer le rayon de convergence et la somme du produit de Cauchy de
∑

zn et 1− z. Qu’en
conclure ?

Correction.

Pour n ∈ N, on pose an = 1 ; bn = 0 si n ≥ 2 ; b0 = 1 et b1 = −1. Alors
∑

anz
n =

∑
zn et∑

bnz
n = 1− z. Le rayon de convergence de

∑
anz

n est Ra = 1 et celui de
∑

bnz
n est Rb = +∞

donc, d’après la proposition 8, le rayon de convergence R du produit de Cauchy
∑

cnz
n des séries
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entières
∑

anz
n et

∑
bnz

n vérifie R ≥ min(1,+∞) = 1 et on a, pour tout z ∈ C tel que |z| < 1 :

+∞∑
n=0

cnz
n =

+∞∑
n=0

(
n∑

k=0

akbn−k

)
zn =

(
+∞∑
n=0

anz
n

)(
+∞∑
n=0

bnz
n

)
=

1

1− z
.(1− z) = 1.

De plus, on remarque que c0 = a0b0 = 1 et, pour tout n ∈ N∗ :

cn =

n∑
k=0

akbn−k = an.b0 + an−1b1 = 1.1 + 1.(−1) = 0.

La suite (cn)n∈N étant stationnaire en 0, le rayon de convergence de
∑

cnz
n est donc R = +∞.

On rmarque alors que dans ce cas R > min(Ra, Rb) : le rayon de convergence du produit de
Cauchy peut donc ”augmenter” par rapport au minimum des rayons des séries entières dont il
est issu.

2. Régularité d’une série entière

a. Convergence normale

Théorème 3.Théorème 3.

Soit
∑

anz
n une série entière de rayon de convergence R > 0. Alors :

— la série entière
∑

anz
n converge normalement sur tout compact de D(0, R) (= C si

R = +∞) ;
— la série entière

∑
anx

n converge normalement sur tout segment de ] − R,R[ (= R si
R = +∞).

Démonstration.

— Soit a > 0 avec a < R. Montrons la série entière
∑

anz
n converge normalement D(0, a).

On note fn : z 7→ anz
n.

On a, pour n ∈ N :
‖fn‖∞ = sup

z∈D(0,a)
(|an||z|n) ≤ |an|an.

Or R = sup{r ∈ R+ |
∑

|an|rn converge}, donc comme a < R, |an|an est le terme général
d’une série convergente.
Par suite, pour tout 0 < a < R, la série entière

∑
anz

n converge normalement sur D(0, a).

Ainsi, comme tout compact de D(0, R) est inclus dans un disque D(0, a) avec a < R, on a
convergence normale de

∑
anz

n sur tout compact de D(0, R).

— Soit a > 0 avec a < R. Montrons la série entière
∑

anx
n converge normalement [−a, a].

On note fn : x 7→ anx
n.

On a, pour n ∈ N :
‖fn‖∞ = sup

x∈[−a,a]

(|an||x|n) ≤ |an|an.
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Or R = sup{r ∈ R+ |
∑

|an|rn converge}, donc comme a < R, |an|an est le terme général
d’une série convergente.
Par suite, pour tout 0 < a < R, la série entière

∑
anx

n converge normalement sur [−a, a].

Ainsi, comme tout segment de ]−R,R[ est inclus dans un intervalle [−a, a] avec 0 < a < R,
on a convergence normale de

∑
anx

n sur tout segment [−R,R].

Remarque : on aurait bien-sur pu utiliser le point précédent pour démontrer le cas réel.

Remarque 4.Remarque 4.

Sur le disque D(0, R), la convergence n’est pas normale en général : par exemple, les séries
entières

∑
zn ou

∑
n≥1

zn

n ne convergent pas normalement sur D(0, 1).

b. Continuité

Théorème 4.Théorème 4.

Soit
∑

anz
n une série entière de rayon de convergence R > 0. Alors sa somme

S : z 7→
+∞∑
n=0

anz
n

est continue sur le disque ouvert de convergence D(0, R).
En particulier, S est continue sur l’intervalle ]−R,R[.

Démonstration.

— D’après le théorème précédent, la série de fonctions
∑

anz
n converge normalement sur

tout compact de D(0, R) et les fonctions z 7→ anz
n sont continues sur C et donc sur

D(0, R) car polynomiales.
Ainsi, d’après le théorème de continuité des séries de fonctions, S : z 7→

∑+∞
n=0 anz

n est
continue sur D(0,R).

— Cas réel : D’après le théorème précédent, la série de fonctions
∑

anx
n converge normale-

ment sur tout segment de ]−R,R[ et les fonctions z 7→ anx
n sont continues sur R et donc

sur ]−R,R[ car polynomiales.
Ainsi, d’après le théorème de continuité des séries de fonctions, S : x 7→

∑+∞
n=0 anx

n est
continue sur ]−R,R[.
Remarque : on aurait bien-sur pu utiliser le point précédent pour démontrer le cas réel.

On se pose alors la question de la continuité de la somme d’une série entière de rayon de convergence
R aux bornes de l’intervalle ]−R,R[. Le théorème suivant nous fournit la réponse :
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Théorème 5.Théorème 5. gThéorème d’Abel radialThéorème d’Abel radial

Soit
∑

anx
n une série entière de la variable réelle de rayon de convergence R > 0 et de somme

S. Si
∑

anR
n converge, alors

S(x) =

+∞∑
n=0

anx
n −−−−→

x→R−

+∞∑
n=0

anR
n,

i.e. S est définie et continue à gauche en R.

Démonstration Hors programme.

Quitte à changer la variable x en x/R, on peut supposer que la rayon de convergence de
∑

anx
n

est R = 1.
On suppose que

∑
an converge vers un certain S ∈ C. Montrons que S(x) −−−−→

x→1−
S.

Pour n ∈ N, on note Sn la somme partielle d’ordre n et Rn le reste d’ordre n de la série
(convergente)

∑
an. Rappelons que (Rn)n∈N converge vers 0.

Soit x ∈ ]− 1, 1[ et N ∈ N. On note SN (x) la somme partielle d’ordre N de la série
∑

anx
n.

On s’inspire de la technique utilisée dans l’exercice 6 pour obtenir la transformation d’Abel, en
se basant sur l’égalité an = Rn−1 −Rn :

SN (x)− SN =

N∑
n=1

an︸︷︷︸
=Rn−1−Rn

(xn − 1)

=

N∑
n=1

Rn−1(x
n − 1)−

N∑
n=1

Rn(x
n − 1)

=

N−1∑
n=0

Rn(x
n+1 − 1)−

N∑
n=0

Rn(x
n − 1)

=

N−1∑
n=0

Rn(x
n+1 − xn)− (xN − 1)RN

SN (x)− SN = (x− 1)

N−1∑
n=0

Rnx
n + (1− xN )RN

En passant à la limite quand N tend vers l’infini dans l’égalité précédente, on déduit que
∑

Rnx
n

converge et on obtient :

S(x)− S = (x− 1)

+∞∑
n=0

Rnx
n.

De plus, cela implique que le rayon de convergence de la série entière la série entière
∑

Rnz
n est

supérieur ou égal à 1 et donc, en particulier, pour tout x ∈ ]−1, 1[,
∑

Rnx
n converge absolument.
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Soit ε > 0. Alors il existe N ∈ N tel que, pour tout n ∈ N, |Rn| ≤ ε
2 et donc, pour x ∈ [0, 1[,

|S(x)− S| ≤ |x− 1|
+∞∑
n=0

|Rn|xn

≤ (1− x)


N−1∑
n=0

|Rn|xn +
ε

2

+∞∑
n=N

xn

︸ ︷︷ ︸
=

xN

1− x


≤ (1− x)

N−1∑
n=0

|Rn|xn +
ε

2
xN

|S(x)− S| ≤ (1− x)

N−1∑
n=0

|Rn|xn +
ε

2
.

Or, on a (1 − x)

N−1∑
n=0

|Rn|xn −−−−→
x→1−

0, donc il existe δ > 0 tel que, pour tout x ∈ [0, 1[ vérifiant

|x− 1| ≤ δ, on a :

(1− x)

N−1∑
n=0

|Rn|xn ≤ ε

2
.

Par suite, pour tout x ∈ [0, 1[ tel que |x− 1| ≤ δ, on a :

|S(x)− S| ≤ (1− x)

N−1∑
n=0

|Rn|xn +
ε

2
≤ ε

2
+

ε

2
= ε.

Il en résulte que |S(x)− S| −−−−→
x→1−

0.

Corollaire 1.Corollaire 1. gThéorème d’Abel radialThéorème d’Abel radial

Soit
∑

anz
n une série entière de rayon de convergence R > 0 et de somme S. S’il existe θ ∈ R

tel que
∑

an(Reiθ)n converge, alors

S(xeiθ) =

+∞∑
n=0

einθanx
n −−−−→

x→R−

+∞∑
n=0

einθanR
n,

En particulier, si
∑

(−1)nanR
n converge, alors S(x) −−−−−→

x→−R+

∑+∞
n=0(−1)nanR

n.
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Démonstration.

Pour n ∈ N, on pose bn = ane
inθ. Considérons la série entière

∑
bnz

n de somme f . Comme, pour
tout n ∈ N, |bn| = |an|,

∑
bnz

n est de rayon de convergence R et, par hypothèse,
∑

bnR
n =∑

an(Reiθ)n converge.
Par suite, d’après le théorème d’Abel radial, on a :

f(x) =

+∞∑
n=0

bnx
n −−−−→

x→R−

+∞∑
n=0

bnR
n =

+∞∑
n=0

einθanR
n.

De plus, on a, pour tout x ∈ ]−R,R[ :

f(x) =

+∞∑
n=0

bnx
n =

+∞∑
n=0

einθanx
n =

+∞∑
n=0

einθan(xe
iθ)n = S(xeiθ),

donc :

S(xeiθ) = f(x) −−−−→
x→R−

+∞∑
n=0

einθanR
n.

Corollaire 2.Corollaire 2.

Si
∑

anx
n est une série entière de la variable réelle, alors sa somme est continue sur l’intervalle

de convergence de la série entière.

Démonstration.

On considère une série entière
∑

anz
n de rayon de convergence R et de somme S. D’après le

théorème 4, S est continue sur ] − R,R[. De plus, si S est définie en R (resp. en −R),
∑

anR
n

(resp.
∑

(−1)nanR
n) converge et ainsi S est continue en R (resp. en −R) d’après le théorème

d’Abel radial.
Il en résulte que S est continue sur son domaine de convergence.

Remarque 5.Remarque 5.

— Attention ! Si la somme S de la série entière
∑

anx
n admet une limite en R−, cela

n’implique pas que la série
∑

anR
n converge !

Par exemple, on a S(x) =
∑

n=0(−1)nxn = 1
1+x −−−−→

x→1−

1
2 et la série

∑
(−1)n diverge.

— Les théorèmes taubériens sont des réciproques partielles du théorème d’Abel radial : voire
l’exercice 18

Exercice 10.Exercice 10.

1. Montrer que f : x 7→
+∞∑
n=1

xn

n2
est continue sur [−1, 1].
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2. Montrer que g : x 7→
+∞∑
n=2

xn

ln(n) est continue sur [−1, 1[.

Correction.

1. La fonction f est la somme de la série entière
∑

n≥1
zn

n2 qui est de rayon de convergence 1.
Ainsi, f est continue sur ]−1, 1[. De plus, par comparaison à l’intégrale de Riemann conver-
gente

∑
n≥1

1
n2 (2 > 1), les séries

∑
n≥1

1
n2 et

∑
n≥1

(−1)n

n2 sont absolument convergentes et
donc convergentes. Par suite, d’après le théorème d’Abel radial est continue en ±1 et donc
sur [−1, 1].

2. La fonction g est la somme de la série entière
∑

n≥2
zn

ln(n) qui est de rayon de convergence
1. Ainsi, g est continue sur ] − 1, 1[. De plus, comme la suite ( 1

ln(n) )n∈N est décroissante
et tend vers 0, d’après le critère des séries alternées, la série

∑
n≥2

(−1)n

ln(n) convergente. Par
suite, d’après le théorème d’Abel radial est continue en −1 et donc sur [−1, 1[.
Remarque : la série

∑
n≥2

1
ln(n) est divergente (car, par exemple, pour n ≥ 2, 1

ln(n) ≥
1
n ) donc

g n’est pas définie en 1 et on peut montrer (voire exercice suivant) que g(x) −−−−→
x→1−

+∞.

Exercice 11.Exercice 11.

Soit (an)n∈N une suite de réels positifs telle que la série entière
∑

anz
n est de rayon de

convergence 1. On note S la somme de la série entière. Montrer que si
∑

an diverge, alors
S(x) −−−−→

x→1−
+∞.

Correction.

On note (Sn)n∈N la suite des sommes partielles de
∑

an.
On suppose que

∑
an diverge. Montrons que S(x) −−−−→

x→1−
+∞ i.e. ∀ M ∈ R+, ∃ δ > 0, ∀ x ∈

]− 1, 1[, |1− x| ≤ δ, S(x) ≥ M .
Soit M ∈ R+. La série étant divergente et à terme positifs, on a Sn −−−−−→

n→+∞
+∞. Par suite, il

existe N ∈ N tel que SN ≥ M + 33 (> M).
On pose alors δ = 1− N

√
M
SN

. Alors δ ∈ ]0, 1[ et donc, pour tout x ∈ ]− 1, 1[ tel que |1− x| ≤ δ,
on a 0 < 1− δ ≤ x < 1, d’où, pour tout n ≤ N ,

xn ≥ xN ≥ (1− δ)N =
M

SN
.

et donc :

S(x) =

+∞∑
n=0

anx
n ≥

N∑
n=0

anx
n ≥ M

SN

N∑
n=0

an︸ ︷︷ ︸
SN

= M.

Il en résulte que S(x) −−−−→
x→1−

+∞.
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c. Série entière dérivée

Définition 5.Définition 5. gSérie entière dérivéeSérie entière dérivée

Soit
∑

anz
n une série entière. On appelle série entière dérivée de

∑
anz

n, la série entière∑
(n+ 1)an+1z

n.

Lemme 2.Lemme 2.

Soit
∑

anz
n une série entière. Pour tout k ∈ N,

∑
anz

n et la série entière
∑

an+kz
n ont même

rayon de convergence.

Démonstration.

Soit z ∈ C∗. On a, pour tout n ∈ N :

an+kz
n = an+kz

n+k.
1

zk

Donc la suite (an+kz
n)n∈N est bornée si, et seulement si, la suite (an+kz

n+k)n∈N est bornée. Or
cette dernière est bornée si, et seulement si, la suite (anz

n)n∈N (car il s’agit de la ”même” suite
à laquelle on a ”ajouté” un nombre fini de terme).
Par suite,

∑
anz

n et
∑

an+kz
n ont même rayon de convergence.

Proposition 9.Proposition 9.

Soit
∑

anz
n une série entière. Alors

∑
anz

n et sa série entière dérivée
∑

(n + 1)an+1z
n ont

même rayon de convergence.

Démonstration.

On note R le rayon de convergence de
∑

anz
n et R′ celui de

∑
(n+1)an+1z

n. D’après le lemme
précédent,

∑
(n+ 1)an+1z

n et
∑

nanz
n ont même rayon de convergence R′.

Soit z ∈ C∗ tel que |z| < R′. Alors la suite (nanz
n)n∈N est bornée et donc (anz

n)n∈N l’est aussi ;
d’où |z| ≤ R. Ceci étant vrai pour tout z tel que |z| < R′, on a R′ ≤ R. Montrons l’inégalité dans
l’autre sens :
Soit z ∈ C∗ tel que |z| < R et ρ ∈ R tel que |z| < ρ < R. Alors la suite (anρ

n)n∈N est bornée,
disons par une constante M ≥ 0. Ainsi, pour tout n ∈ N, on a, comme 0 ≤ |z|

ρ < 1, par croissances
comparées :

|nanzn| = n

(
|z|
ρ

)n

|anρn|︸ ︷︷ ︸
≤M

≤ Mn

(
|z|
ρ

)n

−−−−−→
n→+∞

0

Il en résulte que |z| ≤ R′. Ceci étant vrai pour tout z tel que |z| < R, on a R ≤ R′.
Ainsi, R′ = R.
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Corollaire 3.Corollaire 3.

Soit
∑

anz
n une série entière. Les séries entières

∑
anz

n et
∑ an

n+1z
n+1 ont même rayon de

convergence.

Démonstration.

Les séries entières
∑ an

n+1z
n+1 et

∑
n≥1

an−1

n zn sont ”égales” donc ont le même rayon de conver-
gence.
De plus, la série dérivée de

∑
n≥1

an−1

n zn est
∑

n≥1(n+ 1) an

n+1z
n =

∑
n≥1 anz

n donc, d’après la
proposition précédente,

∑
n≥1 anz

n et
∑

n≥1
an−1

n zn ont même rayon de convergence.
Il en résulte que

∑
anz

n et
∑ an

n+1z
n+1 ont même rayon de convergence.

Corollaire 4.Corollaire 4.

Soit
∑

anz
n une série entière et k ∈ Z. Les séries entières

∑
anz

n et
∑

nkanz
n ont même rayon

de convergence.

Démonstration.

Pour le cas k ∈ N, on raisonne par récurrence en utilisant la proposition 9 et le lemme 2. Puis,
pour le cas négatif, on raisonne de nouveau par récurrence en utilisant le corollaire 3 et le lemme
2.

Exercice 12.Exercice 12.

Montrer que pour tout α ∈ R, Les séries entières
∑

anz
n et la série entière

∑
n≥1 n

αanz
n ont

même rayon de convergence.

Correction.

Soit α ∈ R. On pose k = bαc. Alors on a, pour tout n ∈ N∗, nk ≤ nα ≤ nk+1 si α ≥ 0 et
nk+1 ≤ nα ≤ nk si α < 0. D’après le corollaire 4,

∑
n≥1 n

kanz
n,
∑

n≥1 n
k+1anz

n et
∑

anz
n ont

même rayon de convergence, donc par comparaison,
∑

anz
n et la série entière

∑
n≥1 n

αanz
n ont

même rayon de convergence.

3. Dérivée de la somme d’une série entière réelle

Théorème 6.Théorème 6. gDérivation d’une série entière réelleDérivation d’une série entière réelle

Soit
∑

anx
n une série entière de la variable réelle de rayon de convergence R > 0. Alors sa
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somme f est de classe C∞ sur ]−R,R[ et on a, pour k ∈ N et pour tout x ∈ ]−R,R[ :

f (k)(x) = k!

+∞∑
n=k

(
n

k

)
anx

n−k.

En particulier, on a, pour tout n ∈ N :

an =
f (n)(0)

n!
.

Démonstration.

D’après la proposition 9,
∑

n≥1 nanx
n−1 =

∑
(n+1)an+1x

n a pour rayon de convergence R. Par
suite, les séries entières

∑
anx

n et
∑

n≥1 nanx
n−1 convergent normalement sur tout segment de

]−R,R[. On peut alors vérifier les hypothèses du théorème d’interversion dérivation/somme :

• pour tout n ∈ N, fn : x 7→ anx
n est une fonction polynomiale et donc est de classe C1 sur

]−R,R[ et on a, pour tout x ∈ ]−R,R[ :

f ′
n(x) =

{
0 si n = 0

nanx
n−1 si n ≥ 1

•
∑

fn converge simplement sur ]−R,R[ car
∑

fn converge normalement sur tout segment
de ]−R,R[.

•
∑

f ′
n converge uniformément sur tout segment de ] − R,R[ car

∑
f ′
n =

∑
n≥1 nanx

n−1

converge normalement sur tout segment de ]−R,R[.

Ainsi, d’après le théorème d’interversion dérivation/somme, f : x 7→
∑+∞

n=0 anx
n est de classe C1

sur ]−R,R[ et, pour tout x ∈ ]−R,R[ :

f ′(x) =

(
+∞∑
n=0

fn

)′

(x) =

+∞∑
n=0

f ′
n(x) =

+∞∑
n=1

nanx
n−1.

On obtient alors, par récurrence en utilisant le résultat que l’on vient de démontrer (ou on aurait
pu directement utiliser le théorème d’interversion dérivation/somme version C∞ dès le départ !)
que f est de classe C∞ sur ]−R,R[ et, pour tout k ∈ N, pour tout x ∈ ]−R,R[ :

f (k)(x) =

+∞∑
n=0

dk

dxk
xn =

+∞∑
n=k

n(n− 1)...(n− k + 1)anx
n−k = k!

+∞∑
n=k

(
n

k

)
anx

n−k.

Par suite, on obtient, en évaluant l’égalité précédente en x = 0 :

f (k)(0) = ak.k!

D’où, pour tout n ∈ N,

an =
f (n)(0)

n!
.
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Exemple 3.Exemple 3.∑
n≥1 nx

n a pour rayon de convergence 1, et pour tout x ∈ ]− 1, 1[ :

+∞∑
n=1

nxn =
x

(1− x)2
.

La série entière
∑

n≥1 nz
n a pour de rayon de convergence 1 car elle a le même rayon de convergence

que la série entière
∑

zn (Corollaire 4). De plus en appliquant le théorème 6 à la série
∑

zn, la
fonction f : x 7→

∑+∞
n=0 x

n est de classe C∞ sur ]− 1, 1[ et, comme, pour tous n ∈ N et x ∈ R :

d
dxx

n = nxn−1,

on a, pour tout x ∈ ]− 1, 1[ :

f ′(x) =
d
dx

+∞∑
n=0

xn

=

+∞∑
n=0

d
dxx

n

=

+∞∑
n=1

nxn−1

et on avait, par somme géométrique, f(x) = 1
1−x ; donc :

1

(1− x)2
= f ′(x) =

+∞∑
n=1

nxn−1.

On remarque alors que, pour x ∈ ]− 1, 1[, nxn = xnxn−1 pour obtenir :

+∞∑
n=1

nxn = xf ′(x) =
x

(1− x)2

Exercice 13.Exercice 13.

Montrer que, pour tout k ∈ N et pour tout x ∈ ]− 1, 1[ :

1

(1− x)k+1
=

+∞∑
n=0

(
n+ k

k

)
xn.

Montrer que la formule est encore valable pour z ∈ D(0, 1) à la place de x ∈ ]− 1, 1[.
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Correction.

— La série entière
∑

zn est de rayon de convergence 1 donc f : x 7→
∑+∞

n=0 x
n est de classe

C∞ sur ]− 1, 1[ (mais ça, on le sait déjà puisque f coïncide sur ]− 1, 1[ avec une fonction
bien connue !) et, comme, pour tous k, n ∈ N et x ∈ R :

dk

dxk
xn =

{
0 si n < k

n!
(n−k)!x

n−k si n ≥ k

on a, pour tous k ∈ N et x ∈ ]− 1, 1[ :

f (k)(x) =
dk

dxk

+∞∑
n=0

xn

=

+∞∑
n=0

dk

dxk
xn

=

+∞∑
n=k

n!

(n− k)!
xn−k

= k!

+∞∑
n=k

(
n

k

)
xn−k

f (k)(x) = k!

+∞∑
n=0

(
n+ k

k

)
xn.

De plus, on remarque que, pour x ∈ ] − 1, 1[, f(x) =
+∞∑
n=0

xn =
1

1− x
et donc que, pour

tous k ∈ N et x ∈ ]− 1, 1[ :

k!

(1− x)k+1
= f (k)(x) = k!

+∞∑
n=0

(
n+ k

k

)
xn.

D’où le résultat annoncé en simplifiant par k!.
— Soit z ∈ D(0, 1)∖ {0}. Considérons la série entière

∑
znxn de la variable réelle (ici x).

Alors la rayon de convergence de cette série entière est R = 1
|z| . Par suite, la fonction donc

f : x 7→
∑+∞

n=0 z
nxn est de classe C∞ sur ]− 1, 1[ et on a, pour tous k ∈ N et x ∈ ]−R,R[,

de manière analogue au calcul précédent :

f (k)(x) =
dk

dxk

+∞∑
n=0

znxn

=

+∞∑
n=0

zn
dk

dxk
xn

= k!

+∞∑
n=k

zn
(
n

k

)
xn−k

f (k)(x) = k!zk
+∞∑
n=0

(
n+ k

k

)
(xz)n.
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De plus, on remarque que, pour tout x ∈ ]−R,R[, on a |zx| < 1 donc :

f(x) =

+∞∑
n=0

znxn =

+∞∑
n=0

(xz)n =
1

1− xz

et ainsi, par dérivation successives, pour tout k ∈ N et tout x ∈ ]−R,R[ :

k!zk

(1− xz)k+1
= f (k)(x) = k!zk

+∞∑
n=0

(
n+ k

k

)
xn.

D’où, en simplifiant par k!zk 6= 0, on obtient :

1

(1− xz)k+1
=

+∞∑
n=0

(
n+ k

k

)
(xz)n

On évalue alors en x = 1 ∈ ]−R,R[ (car, comme |z| < 1, R = 1
|z| > 1) et on obtient :

1

(1− z)k+1
=

+∞∑
n=0

(
n+ k

k

)
zn

avec z ∈ D(0, 1) (la formule étant vraie également pour z = 0).

4. Primitive de la somme d’une série entière réelle

Théorème 7.Théorème 7. gPrimitive d’une série entière réellePrimitive d’une série entière réelle

Soit
∑

anx
n une série entière de la variable réelle de rayon de convergence R > 0, F une

primitive sur ]−R,R[ de sa somme f . Alors, pour tout t ∈ ]−R,R[, on a :

F (x) = F (0) +

+∞∑
n=0

an
xn+1

n+ 1
.

Exemple 4.Exemple 4.

On a, pour tout x ∈ ]− 1, 1[,

ln(1− x) = −
+∞∑
n=1

xn

n
.

En effet, ln(1− x) = −
∫ x

0
dt
1−t , d’où

ln(1− x) = −
+∞∑
n=0

xn+1

n+ 1
= −

+∞∑
n=1

xn

n
.

31



D’où on déduit :
+∞∑
n=1

(−1)n

n
= − ln(2).

En effet, la série
∑

n≥1
(−1)n

n converge d’après le critère des séries alternées et donc, d’après
le théorème d’Abel radial, on obtient :

+∞∑
n=1

(−1)n

n
= lim

x→−1

+∞∑
n=1

xn

n
= − lim

x→−1
ln(1− x) = − ln(2).

Exercice 14.Exercice 14.

On considère la série entière
∑
n≥1

xn

n2
de somme notée S.

1. Montrer que S est une primitive de x 7→ − ln(1− x)

x
sur ]− 1, 1[.

2. En déduire que : ∫ 1

0

ln(1− t)

t
dt = −ζ(2).

Correction.

1. La série entière
∑

n≥1
xn−1

n est de rayon de convergence 1 donc, en notant f sa somme sur
]− 1, 1[, on a, pour tout x ∈ ]− 1, 1[,∫ x

0

f(t) dt =
+∞∑
n=1

∫ x

0

tn−1

n
dt =

+∞∑
n=1

xn

n2
= S(x)

De plus, on a, pour tout x ∈ ]− 1, 1[∖{0} :

f(x) =

+∞∑
n=1

xn−1

n
=

1

x

+∞∑
n=1

xn

n
= − ln(1− x)

x
.

La fonction x 7→ − ln(1−x)
x étant de limite 0 en 0, l’intégrale

∫ x

0
− ln(1−t)

t dt converge et on a
alors, pour tout x ∈ ]− 1, 1[ :

S(x) =

∫ x

0

f(t) dt =
∫ x

0

− ln(1− t)

t
dt.

Par suite, S est une primitive de x 7→ − ln(1−x)
x (prolongé par 0 en 0) sur ]− 1, 1[.

2. La série de Riemann
∑

n≥1
1
n2 est convergente car 2 > 1 donc S est définie et continue en

1 d’après le théorème d’Abel radial. De plus, l’intégrale
∫ 1

0
ln(1−t)

t dt est bien définie car
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x 7→ − ln(1−x)
x (prolongé par 0 en 0) est continue sur le segment [0, 1]. Par suite :

∫ 1

0

ln(1− t)

t
dt = lim

x→1−

∫ x

0

ln(1− t)

t
dt = lim

x→1−
−S(x) = −S(1) = −

+∞∑
n=1

1

n2
.

Exercice 15.Exercice 15.

Déterminer une suite (an)n∈N telle que, pour tout x ∈ ]− 1, 1[,

arctan(x) =
+∞∑
n=0

anx
n.

puis en déduire la valeur de
+∞∑
n=0

(−1)n

2n+ 1
.

Correction.

On connaît bien la dérivée de arctan et, par sommation d’uné série géométrique, on sait également
que cette dérivée est, sur ] − 1, 1[ la somme de la série entière

∑
(−1)nz2n qui est de rayon de

convergence 1 (par exemple en remarquant que, pour z = 1, la suite est bornée mais est le terme
général d’une série divergente).
Ainsi, comme arctan est, sur ]− 1, 1[, une primitive de la somme de la série entière

∑
(−1)nx2n,

d’après le théorème 7, pour tout x ∈]− 1, 1[, on a :

arctan(x) = arctan(0) +
+∞∑
n=0

(−1)n
x2n+1

2n+ 1
=

+∞∑
n=0

(−1)n

2n+ 1
x2n+1.

Ainsi, la suite (an)n∈N recherchée est de terme général :

an =

{
0 si n est pair,
(−1)k

n xn si n = 2k + 1 est impair,

Comme
∑ (−1)n

2n+1 converge (d’après la critère des séries alternées), d’après le théorème d’Abel
radial (Théorème 1), la somme de la série entière

∑
(−1)nx2n est continue en 1 et vaut, en 1, la

somme de
∑ (−1)n

2n+1 . De plus, cette valeur en 1 coïncide avec arctan(1) puisque la fonction arctan
est continue en 1 également ! Par suite, on a :

+∞∑
n=0

(−1)n

2n+ 1
= arctan(x) = π

4
.
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Développements en série entière
Partie CPartie C

Dans cette partie, U désigne un voisinage de 0 dans R.

1. Développement en série entière d’une fonction d’une variable réelle

a. Définition et premier exemple

Définition 6.Définition 6. gFonction développable en série entièreFonction développable en série entière

Soit r > 0 et f :]− r, r[→ C. On dit que f est développable en série entière sur ]− r, r[ s’il
existe une série entière

∑
anx

n telle que, pour tout x ∈ ]− r, r[ :

f(x) =

+∞∑
n=0

anx
n.

Soit f : U → C. On dit que f est développable en série entière s’il existe r > 0 tel que f

est développable en série entière sur ]− r, r[.

Remarque 6.Remarque 6.

Attention, le développement en série entière d’une fonction n’est pas, en général, valable sur
tout l’ensemble de définition de la fonction !

Exemple 5.Exemple 5.

Les fonctions suivantes sont développables en série entière :
— x 7→ 1

1− x
— x 7→ ln(1− x).

— On a pour tout x ∈ ]− 1, 1[,
1

1− x
=

+∞∑
n=0

xn

donc x 7→ 1

1− x
est développable en série entière sur ]− 1, 1[.

— On remarque tout d’abord, que pour tout x ∈ ]− 1,+∞[,

ln(1− x) = −
∫ x

0

1

1− t
dt.
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Considérons alors la série entière
∑

xn de rayon de convergence égal à 1 et notons f sa
somme.
Alors f admet une primitive sur ]− 1, 1[. On considère la primitive F de f qui s’annule en
0. Par le théorème d’interversion intégrale/somme, on a, pour tout x ∈ ]− 1, 1[ :

F (x) =

∫ x

0

f(t)dt =

∫ x

0

(
+∞∑
n=0

tn

)
dt =

+∞∑
n=0

(∫ x

0

tndt

)
=

+∞∑
n=0

xn+1

n+ 1
=

+∞∑
n=1

xn

n
.

Or, pour t ∈ ]− 1, 1[, f(t) = 1

1− t
, donc pour x ∈ ]− 1, 1[

ln(1− x) = −
∫ x

0

1

1− t
dt = −F (x) = −

+∞∑
n=1

xn

n
.

Par suite, x 7→ ln(1− x) est développable en série entière sur ]− 1, 1[.

Exercice 16.Exercice 16.

1. Montrer que x 7→ 1

(1− x)2
est développable en série entière sur ]− 1, 1[.

2. Montrer que x 7→ 1

(i− x)2
est développable en série entière sur ]− 1, 1[.

Correction.

1. D’après l’exercice 13 avec k = 2, on a, pour tout x ∈]− 1, 1[ :

1

(1− x)2
=

+∞∑
n=1

nxn−1

donc x 7→ 1
(1−x)2 est développable en série entière sur ]− 1, 1[.

2. On remarque que, pour tout x ∈]− 1, 1[, |−ix| = |x| < 1 et :

1

i− x
=

1

i
.

1

1 + ix
= −i

+∞∑
n=0

(−ix)n = −i

+∞∑
n=0

(−i)nxn.

La série entière
∑

(−i)nzn est de rayon de convergence 1 donc d’après la théorème de
dérivation des sommes de séries entières (Théorème 6), sa somme f est dérivable sur ]−1, 1[
et on a, pour tout x ∈]− 1, 1[ :

f ′(x) =
d
dx

+∞∑
n=0

(−i)nxn =

+∞∑
n=0

(−i)n
d
dxx

n =

+∞∑
n=0

(−i)nnxn−1 =

+∞∑
n=0

(−i)nnxn−1.

Et de plus, on a, pour x ∈]− 1, 1[, comme f(x) = i
i−x ,

f ′(x) =
i

(i− x)2
.
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Il en résulte que, pour tout x ∈]− 1, 1[ :

1

(i− x)2
= −if ′(x) =

+∞∑
n=0

(−i)n+1nxn−1 =

+∞∑
n=1

(−i)n+2(n+ 1)xn.

Par suite, x 7→ 1

(i− x)2
est développable en série entière sur ]− 1, 1[.

b. Unicité du développement en série entière

Proposition 10.Proposition 10. gUnicité du développement en série entièreUnicité du développement en série entière

Soit
∑

anx
n et

∑
bnx

n des séries entières de la variable réelle. S’il existe r > 0 tel que pour
tout x ∈ ]− r, r[ :

+∞∑
n=0

anx
n =

+∞∑
n=0

bnx
n,

alors, pour tout n ∈ N, an = bn.

c. Séries de Taylor

Définition 7.Définition 7. gSérie de Taylor-MacLaurinSérie de Taylor-MacLaurin

Soit f : U → R une fonction C∞. On appelle série de Taylor-MacLaurin de f , la série
entière : ∑ f (n)(0)

n!
zn.

Théorème 8.Théorème 8.

Soit r > 0 et f :]− r, r[→ C. Si f est développable en série entière, alors f est C∞ sur ]− r, r[
et f coïncide avec sa série de Taylor-MacLaurin sur ]− r, r[ i.e., pour tout x ∈ ]− r, r[ :

f(x) =

+∞∑
n=0

f (n)(0)

n!
xn.

Remarque 7.Remarque 7.

Attention ! La réciproque du théorème précédent est fausse ! Par exemple, la fonction f : x 7→
e−

1
x2 (prolongée par continuité en 0 par f(0) = 0) est C∞ sur R mais n’est pas égale à sa série

de Taylor-MacLaurin au voisinage de 0.
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Exemple 6.Exemple 6.

La fonction f : x 7→ x+ ln(1− x)

x2
est prolongeable en une fonction de classe C∞ sur ]−∞, 1[.

La fonction f est de classe C∞ sur ]−∞, 1[∖{0} comme quotient de fonctions bien définie et de
classe C∞ sur ]−∞, 1[∖{0} dont le dénominateur ne s’annule pas.
Mais en 0 ? Comment s’y prendre ? Le théorème de la limite de la dérivée peut être pratique pour
réaliser un prolongement mais encore faut-il pouvoir calculer la dérivée k-ième de la fonction pour
k ∈ N (mais ce n’est pas hors d’atteinte ici tout de même !)
Une nouvelle option s’ouvre à nous grâce au théorème 8 : si une fonction est développable en série
entière sur ]− r, r[, alors elle est de classe C∞ sur ]− r, r[.
Il suffirait donc d’écrire notre fonction f comme somme de série entière sur un certain intervalle
privé de 0 et de prolonger f en 0 par la valeur en 0 de la somme !
Allons-y ! On a vu précédemment que, pour x ∈ ]− 1, 1[, ln(1− x) = −

∑+∞
n=1

xn

n ; d’où, pour tout
x ∈ ]− 1, 1[∖{0} :

f(x) =
x+ ln(1− x)

x2
=

x−
∑+∞

n=1
xn

n

x2
= −

+∞∑
n=2

xn−2

n
=

+∞∑
n=0

−1

n+ 2
xn.

Et de plus,
∑+∞

n=0
−1
n+20

n = − 1
2 ; donc, en prolongeant f en 0 par f(0) = − 1

2 , la fonction f est
développable en série entière comme somme de la série entière

∑ −1
n+2x

n sur ] − 1, 1[ et donc,
d’après le théorème 8, f ainsi prolongée est de classe C∞ sur ]− 1, 1[ et donc sur ]−∞, 1[.

d. Opérations sur les développements en série entière

Proposition 11.Proposition 11.

Soit f, g des fonctions de U dans C. On suppose que f et g sont développables en série entière
sur ]− rf , rf [ et ]− rg, rg[ respectivement où rf , rg > 0. Alors, en posant r = min(rf , rg),

• pour tous λ, µ ∈ R, la fonction λf + µg est développable en série entière sur ]− r, r[ ;

• la fonction fg est développable en série entière sur ]− r, r[.

2. Développements en série entière usuels

a. L’exponentielle, les fonctions trigonométriques et hyperboliques

Théorème 9.Théorème 9.

La fonction x 7→ ex est développable en série entière sur R et pour tout x ∈ R, ex = exp(x).
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Définition 8.Définition 8. gLes fonctions cosinus et sinus complexesLes fonctions cosinus et sinus complexes

On définit les fonctions de C dans C notées cos et sin, pour z ∈ C, par :

cos(z) = exp(iz) + exp(−iz)

2
et sin(z) = exp(iz)− exp(−iz)

2i
.

À toujours savoir retrouver ! Les développements en série entières sur R des fonctions trigo-
nométriques et hyperboliques :

cos(x) =
+∞∑
n=0

(−1)nx2n

(2n)!
sin(x) =

+∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

ch(x) =
+∞∑
n=0

x2n

(2n)!
sh(x) =

+∞∑
n=0

x2n+1

(2n+ 1)!
.

Correction.

Montrons que sin est développable en série entière sur R et déterminons ce développement.
Pour tout x ∈ R, on a :

sin(x) = exp(ix)− exp(−ix)

2i
.

Or, les fonctions x 7→ e±ix sont développables en série entière sur R, et on a, pour tout x ∈ R :

e±ix =

+∞∑
n=0

(±ix)n

n!

La série entière
∑

anx
n avec an =

(ix)n − (−ix)n

n!
est de rayon de convergence égal à +∞ car

il s’agit de la somme des séries entières
∑ (ix)n

n! et
∑

− (−ix)n

n! qui ont un rayon de convergence
égal à +∞. Et de plus, on a, pour tout x ∈ R :

+∞∑
n=0

anx
n =

+∞∑
n=0

(ix)n

n!
+

+∞∑
n=0

− (−ix)n

n!
= exp(ix)− exp(−ix) = 2i sin(x).

Ainsi, sin est développable en série entière sur R et on a, pour tout x ∈ R :
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2i sin(x) =

+∞∑
n=0

anx
n

=

+∞∑
n=0

(ix)n − (−ix)n

n!

=

+∞∑
n=0

in(1− (−1)n)
xn

n!

=
∑

n impair
2in

xn

n!

=

+∞∑
k=0

2 i2k+1︸ ︷︷ ︸
=i((i)2)k=i(−1)k

x2k+1

(2k + 1)!

=

+∞∑
k=0

2i(−1)k
x2k+1

(2k + 1)!
,

d’où

sin(x) =
+∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Exercice 17.Exercice 17.

Montrer que la fonction sinc : x 7→ sin(x)
x est prolongeable en une fonction de classe C∞ sur R.

Correction.

Montrons qu’en dehors de 0, la fonction sinc coïncide avec la somme d’une série entière.
La fonction sinus est développable en série entière sur R et on a, pour tout x ∈ R∖ {0} :

sinc(x) =
∑+∞

n=0(−1)n x2n+1

(2n+1)!

x
=

+∞∑
n=0

(−1)n
x2n

(2n+ 1)!
.

Par suite, sinc coïncide sur R∗ avec la somme de la série entière
∑

(−1)n x2n

(2n+1)! donc, en prolon-
geant sinc en 0 par :

sinc(0) =
+∞∑
n=0

(−1)n
02n

(2n+ 1)!
= 1,

on obtient que la fonction sinc est développable en série entière sur R et donc que sinc ainsi
prolongée est de classe C∞ sur R d’après le théorème 8.

b. Les fonctions x 7→ (1 + x)α
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Théorème 10.Théorème 10.

Soit α ∈ R. Alors la fonction x 7→ (1 + x)α est développable en série entière sur ] − 1, 1[ et on
a, pour tout x ∈ ]− 1, 1[ :

(1 + x)α =

+∞∑
n=0

α(α− 1)...(α− n+ 1)

n!
xn.

À toujours savoir retrouver ! Les développements en série entières sur ]− 1, 1[ de :

1

(1− x)k+1
=

+∞∑
n=0

(
n+ k

k

)
xn ln(1 + x) =

+∞∑
n=0

(−1)n+1xn

n

arctan(x) =
+∞∑
n=0

(−1)nx2n+1

2n+ 1
arcsin(x) =

+∞∑
n=0

(2n)!

4n(n!)2
x2n+1

2n+ 1
.

Correction Pour le arcsinus !.

On se rappelle que pour tout x ∈ ]− 1, 1[, on a :

arcsin′(x) =
1√

1− x2
= (1− x2)−

1
2 .

Remarque : il se serait bien de savoir démontrer ce résultat... donc : Exercice, montrer
l’égalité précédente !
Indication : on sait que arcsin est la fonction réciproque de sin restreinte à [−π/2, π/2] (la
fonction sin est bien une bijection de [−π/2, π/2] dans [−1, 1] car elle est strictement croissante
sur [−π/2, π/2]). De plus, on connaît (ou on sait retrouver) la formule qui relie la dérivée de
la réciproque d’une fonction et la dérivée de la fonction. Et on conclut grâce à la formule
de trigonométrie la plus connue du monde qui relie le cosinus et le sinus !

La fonction y 7→ (1 + y)−
1
2 est développable en série entière sur ] − 1, 1[ et on a, pour tout

y ∈ ]− 1, 1[ :

(1 + y)−
1
2 =

+∞∑
n=0

− 1
2 (−

1
2 − 1)...(− 1

2 − n+ 1)

n!
yn

=

+∞∑
n=0

(−1)n × 1× 3× 5× ...× (2n− 1)

2nn!
yn

=

+∞∑
n=0

(−1)n(2n)!

(2× 4× ...× 2n)2nn!
yn

=

+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn

Ainsi, pour tout x ∈ ]− 1, 1[, on a y = −x2 ∈ ]− 1, 0[⊂]− 1, 1[, donc :
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(1− x2)−
1
2 =

+∞∑
n=0

(−1)n(2n)!

4n(n!)2
(−x2)n

=

+∞∑
n=0

(2n)!

4n(n!)2
x2n

Il en résulte que x 7→ (1− x2)−
1
2 est développable en série entière sur ]− 1, 1[. De plus, le rayon

de convergence R de la série entière associée à ce développement est R = 1 (on peut obtenir ce
résultat en utilisant la règle de D’Alembert pour les séries tout court puisqu’il s’agit d’une série
entière lacunaire).

Ainsi, on peut primitiver sur ] − 1, 1[ la somme S : x 7→
+∞∑
n=0

(2n)!

4n(n!)2
x2n, et on a, pour tout

x ∈ ]− 1, 1[ : ∫ x

0

+∞∑
n=0

(2n)!

4n(n!)2
t2ndt =

+∞∑
n=0

(2n)!

4n(n!)2

∫ x

0

t2ndt

=

+∞∑
n=0

(2n)!

4n(n!)2
x2n+1

2n+ 1

Ainsi, en remarquant que deux primitives sont égales à une constante près et que la primitive
précédente s’annule en 0 tout comme arcsin(0), on obtient, pour tout x ∈ ]− 1, 1[ :

arcsin =

+∞∑
n=0

(2n)!

4n(n!)2
x2n+1

2n+ 1
.

et donc que arcsin est développable en série entière sur ]− 1, 1[.
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Exercices et problèmes
E&PE&P

L’exercice suivant propose une réciproque partielle du théorème d’Abel radial :

Exercice 18.Exercice 18. gThéorème taubérien faibleThéorème taubérien faible

Soit
∑

anz
n une série entière de rayon de convergence R > 0 et de somme S. Si an = o

n→+∞
( 1n )

et S admet une limite finie ℓ en R−.
Montrer que

∑
anR

n converge et
+∞∑
n=0

anR
n = ℓ.

Correction.

Quitte à changer la variable x en x/R, on peut supposer que la rayon de convergence de
∑

anx
n

est R = 1.
On note (Sn)n∈N =

∑
an. On va montrer que la série converge vers ℓ avec la définition i.e. en

montrant que |SN − ℓ| tend vers 0 quand N tend vers +∞. L’idée est de ”passer” par les termes
d’une suite qui tend vers ℓ, la suite de terme général S

(
1− 1

N

)
. Allons-y :

On a, pour N ∈ N :

|S
(
1− 1

N

)
− SN | =

∣∣∣∣∣
+∞∑
n=0

an

(
1− 1

N

)n

−
N∑

n=0

an

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=0

an

((
1− 1

N

)n

− 1

)
+

+∞∑
n=N+1

an

(
1− 1

N

)n
∣∣∣∣∣

|S
(
1− 1

N

)
− SN | ≤

N∑
n=0

|an|
∣∣∣∣(1− 1

N

)n

− 1

∣∣∣∣+ +∞∑
n=N+1

|an|
(
1− 1

N

)n

— Traitons la somme de 0 à N . D’après la formule du binôme de Newton, on a
(
1− 1

N

)n

=

n∑
k=0

(−1)k
(
n

k

)
1

Nk
, d’où :

∣∣∣∣(1− 1

N

)n

− 1

∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

(−1)k
(
n

k

)
1

Nk

∣∣∣∣∣ ≤
n∑

k=1

(
n

k

)
1

Nk
≤
(
n

1

)
1

N1
=

n

N
,

et ainsi :
N∑

n=0

|an|
∣∣∣∣(1− 1

N

)n

− 1

∣∣∣∣ ≤ 1

N

N∑
n=0

n|an|.
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Comme an = o
n→+∞

( 1n ), on a nan −−−−−→
n→+∞

0, donc, d’après le lemme de Cesàro,
1
N

∑N
n=0 n|an| −−−−−→N→+∞

0.

Par suite,
N∑

n=0

|an|
∣∣∣∣(1− 1

N

)n

− 1

∣∣∣∣ −−−−−→N→+∞
0.

— Traitons la seconde somme. De nouveau d’après l’hypothèse, la suite (nan)n∈N converge
(vers 0) et donc elle est bornée ; on note alors MN = sup

n∈N, n≥N+1
(n|an|). On a :

+∞∑
n=N+1

|an|
(
1− 1

N

)n

=

+∞∑
n=N+1

(n|an|)︸ ︷︷ ︸
≤MN

1

n︸︷︷︸
≤ 1

N

(
1− 1

N

)n

≤ MN × 1

N

+∞∑
n=N+1

(
1− 1

N

)n

Or, on remarque que :
+∞∑

n=N+1

(
1− 1

N

)n

≤
+∞∑
n=0

(
1− 1

N

)n

=
1

1− (1− 1
N )

= N

et donc :
+∞∑

n=N+1

|an|
(
1− 1

N

)n

≤ MN .

Montrons alors que la suite (MN )N∈N converge vers 0. Soit ε > 0. Comme (nan)n∈N
converge vers 0, il existe n0 ∈ N tel que, pour tout entier n ≥ n0, n|an| ≤ ε.
Soit N ∈ N avec N ≥ n0. Alors, pour tout entier n ≥ N +1, on a n ≥ n0, donc n|an| ≤ ε.
D’où MN = supn∈N, n≥N+1(n|an|) ≤ ε.
Il en résulte que (MN )N∈N tend vers 0.
En fait, si on connait les propriétés de la limite supérieure, on a limMN = lim supn|an|
donc comme (n|an|) converge, limMN = limn|an|.
Par suite :

+∞∑
n=N+1

|an|
(
1− 1

N

)n

−−−−−→
N→+∞

0

Conclusion :
|S
(
1− 1

N

)
− SN | −−−−−→

N→+∞
0.

De plus, par hypothèse, S(x) −−−−→
x→1−

ℓ, donc, d’après le caractérisation séquentielle de la limite,
S
(
1− 1

N

)
−−−−−→
N→+∞

ℓ. Ainsi :

|SN − ℓ| ≤
∣∣∣∣SN − S

(
1− 1

N

)∣∣∣∣+ ∣∣∣∣S (1− 1

N

)
− ℓ

∣∣∣∣ −−−−−→N→+∞
0

et donc,
∑

an = (Sn)n∈N converge et on a :
+∞∑
n=0

an = lim
N→+∞

SN = ℓ.

Remarque : il existe également un théorème taubérien fort (ou théorème taubérien de Hardy-
Littlewood - du nom de ceux qui l’ont démontré) dans lequel l’hypothèse petit o devient grand O
- ce qui implique donc le théorème taubérien faible. La démonstration en est bien plus difficile !
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Problème 1.Problème 1. gSomme des sinus cardinaux des entiersSomme des sinus cardinaux des entiers

Questions préliminaires :

P1. (a) Soit θ /∈ 2πZ. Montrer que la série
∑

n≥1
einθ

n converge en utilisant l’égalité, pour
n ∈ N∗, einθ = Sn − Sn−1 où Sn est la somme partielle d’ordre n ∈ N∗ de la série∑

n≥1 e
inθ.

(b) En déduire que
∑

n≥1
sin(n)

n ;
∑

n≥1
cos(2n)

n et
∑

n≥1(−1)n sin(n)
n sont des séries conver-

gentes.

P2. En remarquant que, pour x ∈ R, sin2(x) ≤ | sin(x)|, montrer que
∑

n≥1
| sin(n)|

n diverge.

On considère la série entière
∑
n≥1

sin(n)
n

xn de somme S sur son domaine de convergence.

1. Montrer que S est de classe C∞ sur ]− 1, 1[ et continue sur [−1, 1].
2. Exprimer S′ puis S à l’aide de fonctions usuelles sur ]− 1, 1[.
3. En déduire les valeurs des sommes de séries suivantes :

+∞∑
n=1

sin(n)
n

et
+∞∑
n=1

(−1)n
sin(n)

n
.

4. En déduire, après avoir justifié la convergence de la série associée, que :

+∞∑
n=0

sin(2n+ 1)

2n+ 1
=

π

4
.

Correction.

P1. (a) Remarque : on a déjà prouvé ce résultat dans l’exercice 7 en utilisant le critère d’Abel
(exercice 6). On refait ici la preuve directe, toujours grâce à une transformée d’Abel
(exercice 6), mais sans le dire !.
Soit θ /∈ 2πZ. Pour n ∈ N∗, On pose Sn =

∑n
k=1 e

ikθ et on a einθ = Sn − Sn−1. Ainsi,
pour N ∈ N∗ :

N∑
n=1

einθ

n
=

N∑
n=1

Sn

n
−

N∑
n=1

Sn−1

n

=
SN

N
+

N−1∑
n=1

Sn

n
−

N−1∑
n=1

Sn

n+ 1

N∑
n=1

einθ

n
=

SN

N
−

N−1∑
n=1

Sn

n(n+ 1)

De plus, comme eiθ 6= 1, on a :

|Sn| =
∣∣∣∣1− einθ

1− eiθ

∣∣∣∣ ≤ 2

|1− eiθ|
=

1

| sin(θ)| .

La suite (Sn) est alors bornée. Ainsi, la suite (Sn

n ) converge (vers 0) et la série de terme
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général Sn

n(n+1) est absolument convergente par comparaison à une série de Riemann
et donc convergente.
Par suite, la série

∑
n≥1

einθ

n converge car la suite de ses sommes partielles converge.

(b) Pour une suite (un)n∈N à valeurs dans C, on a : (un)n∈N converge si, et seulement si,
(Re(un))n∈N et (Im(un))n∈N convergent.
Ainsi, en utilisant la convergence prouvée précédemment de

∑
n≥1

einθ

n :

— pour θ = 1 /∈ 2πZ,
∑

n≥1
sin(n)

n converge car sin(n) = Im(ein).

— pour θ = 2 /∈ 2πZ,
∑

n≥1
cos(2n)

n converge car cos(2n) = Re(e2in).

— pour θ = 1+π /∈ 2πZ,
∑

n≥1
sin(n(1+π))

n converge car sin(n(1+π)) = Im(ein(1+π)).

Or, on remarque que sin(n(1+ π)) = sin(n+nπ) = sin(n) cos(nπ) = (−1)n sin(n) ;
donc : ∑

n≥1

(−1)n
sin(n)

n
=
∑
n≥1

sin(n(1 + π))

n
converge.

P2. Pour x ∈ R, comme | sin(x)| ≤ 1, on a sin2(x) ≤ | sin(x)| ; et donc, pour tout n ∈ N∗, on a
sin2(n)

n ≤ | sin(n)|
n .

De plus, pour x ∈ R, on a sin2(x) = 1
2 (1− cos(2x)) donc, pour tout n ∈ N∗ :

| sin(n)|
n

≥ 1

2

(
1

n
− cos(2n)

n

)
Or 1

n est le terme général d’une série divergente et d’après la question P1., cos(2n)
n est le

terme général d’une série convergente. Par suite,
∑

n≥1
1
2

(
1
n − cos(2n)

n

)
diverge et donc, par

comparaison,
∑

n≥1
| sin(n)|

n diverge.

1. Notons R le rayon de convergence de la série.
On a sin(n)

n −−−−−→
n→+∞

0 donc R ≥ 1. De plus, d’après la question P2., la série
∑

n≥1
sin(n)

n ne
converge pas absolument donc R ≤ 1. Par suite R = 1.
Par suite, la fonction S est de classe C∞ sur ] − 1, 1[ comme somme de série entière de
rayon de convergence 1.
D’après la question P1. (b) les séries numériques

∑
n≥1

sin(n)
n et

∑
n≥1(−1)n sin(n)

n
convergent donc, d’après le théorème d’Abel radial, S tend vers les sommes de ces séries en
1 et −1 respectivement et donc S est continue sur [−1, 1].

2. Comme S est la somme d’une série entière de rayon de convergence 1, on a, pour tout
x ∈ ]− 1, 1[ :

S′(x) =

+∞∑
n=1

sin(n)
n

.
d

dxx
n =

+∞∑
n=1

sin(n)xn−1 =

+∞∑
n=0

sin(n+ 1)xn
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De plus, comme sin(x) = Im(eix) pour tout x ∈ R, on obtient, pour tout x ∈ ]− 1, 1[ :

S′(x) = Im
(

+∞∑
n=0

ei(n+1)xn

)

= Im
(

ei

1− eix

)
=

sin(1)
x2 − 2 cos(1)x+ 1

S′(x) =
1

sin(1)
1

1 +
(

x−cos(1)
sin(1)

)2 .
Par suite, on a, pour tout x ∈ ]− 1, 1[ :

S(x) = S(0) +

∫ x

0

S′(t) dt = arctan
(
x− cos(1)

sin(1)

)
− arctan

(
− 1

tan(1)

)
.

On rappelle que pour tout x 6= 0, arctan (x) + arctan
(
1
x

)
= π

2 , donc :

S(x) = arctan
(
x− cos(1)

sin(1)

)
+ arctan

(
1

tan(1)

)
= arctan

(
x− cos(1)

sin(1)

)
+

π

2
− arctan (tan(1))

S(x) =
π

2
− 1 + arctan

(
x− cos(1)

sin(1)

)
.

3. La fonction f : x 7→ π − 1 + arctan
(

x−cos(1)
sin(1)

)
est continue sur R et donc en ±1. Ainsi,

comme S est également continue en ±1, on obtient f(±1) = S(±1). Ce qui nous permet de
calculer les sommes recherchées.
Pour ce faire, on utilise les formules usuelles :

cos(p)− cos(q) = −2 sin
(
p+ q

2

)
sin
(
p− q

2

)
et

cos(p) + cos(q) = 2 cos
(
p+ q

2

)
cos
(
p− q

2

)
pour trouver, en écrivant 1 = cos(0) :

1− cos(1) = 2 sin2

(
1

2

)
et − 1− cos(1) = −2 cos2

(
1

2

)

et on a également, par les formules d’additions du sinus, sin(1) = 2 sin
(
1

2

)
cos
(
1

2

)
.

En se basant sur ces résultats, on trouve :
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— en 1 :
+∞∑
n=1

sin(n)
n

= S(1) = f(1)

=
π

2
− 1 + arctan

(
1− cos(1)

sin(1)

)
=

π

2
− 1 + arctan

(
tan

(
1

2

))
+∞∑
n=1

sin(n)
n

=
π

2
− 1

2

— en −1 : en utilisant de nouveau la formule reliant arctan(x) et arctan(1/x) :

+∞∑
n=1

(−1)n
sin(n)

n
= S(−1) = f(−1)

=
π

2
− 1 + arctan

(
−1− cos(1)

sin(1)

)

=
π

2
− 1 + arctan

(
− 1

tan
(
1
2

))

=
π

2
− 1− π

2
+

1

2
+∞∑
n=1

(−1)n
sin(n)

n
= −1

2

On a donc trouvé :

+∞∑
n=1

sin(n)
n

=
π

2
− 1

2
et

+∞∑
n=1

(−1)n
sin(n)
n

= −1

2
.

4. La série de terme général (1−(−1)n)
2

sin(n)
n est convergente comme combinaison linéaire de

séries convergentes et on a :

+∞∑
n=1

(1− (−1)n)

2

sin(n)
n

=
1

2

+∞∑
n=1

sin(n)
n

− 1

2

+∞∑
n=1

(−1)n
sin(n)

n
=

π

4

On note (Sn)n∈N∗ la suite somme partielle de la série précédente et (Tn)n∈N la suite des
sommes partielles de la série

∑ sin(2n+1)
2n+1 . Comme (1− (−1)n) = 0 pour tout entier pair, on

a, pour tout N ∈ N

S2N+1 =

2N+1∑
n=1

nimpair

sin(n)
n

=︸︷︷︸
n′=n−1

2

N∑
n′=1

sin(2n′ + 1)

2n′ + 1
= TN
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Ainsi, la série
∑ sin(2n+1)

2n+1 = (Tn)n∈N est une sous-suite de la série convergente∑
n=1

(1−(−1)n)
2

sin(n)
n et donc converge et ce, vers la même limite. Par suite, on a :

+∞∑
n=0

sin(2n+ 1)

2n+ 1
=

π

4
.
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