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Dans ce chapitre, K désigne le corps R ou le corps C et (an)nen, (bn)nen désignent, sauf mention
contraire, des suites a valeurs dans K.

Partie A

Définitions et généralités sur les séries enticres

1. Séries entiéres

Définition 1.| Série entiere

Soit (an)nen une suite a valeurs dans K. On appelle série entiére associée a la suite (an)nen,
la série de fonction Y f,, ou, pour n € N, la fonction f, : C — C est définie par :

fniz—apz™.

On notera (abusivement) Y a,z" la série entiére associée a la suite (ay)nen-

Exemple 1.

On connait déja plusieurs séries entieres :

— la série géométrique > 2™ ;

n

— la série de somme exponentielle E o
n!

Exercice 1.

Soit (an)nen une suite de nombres complexes. Montrer que > a,2z?" est une série entiere.

Attention! Il y a un piege! Y a,, 2" est bien une série entiére : il s’agit de la série entiere > b, 2"
ou, pour n € N,

bp = an/2  sin est pair

b, =0 si n est impair

Définition 2., Somme et domaine de convergence

Soit > a, 2™ une série entiere.
— On note D et Dy et on appelle respectivement domaine de convergence et domaine



réel de convergence de la série entiére > a,2" les ensembles :
D={zeC| Zanz" converge } et D = {z € R | Zanaﬁ" converge }.

— On appelle somme de la série entiére > a,z" la fonction somme S : D — C de la
série, i.e.

“+o0
Sz E a2,
n=0

Remarque 1.

Par définition, le domaine de convergence d’une série entiére > a,z" coincide avec le domaine
de définition de sa somme S. Ainsi, comme on ’a vu dans le Chapitre séries de fonctions, le
domaine de convergence de la série entiere Y a, 2™ est le plus grand ensemble sur lequel la série
de fonctions > a,2™ converge simplement.

Question 1.

Que dire de la somme d’une série entiere associée a une suite stationnaire en 07

Réponse : Soit (an)nen est une suite stationnaire en 0; on note N = min,en(a, = 0) et
P = ZnN;()l ap X" € C[X]. Alors la série > anz™ converge pour tout z € C. En effet, la suite

. . . N— R .
des sommes partielles est stationnaire en anol anz" = P(z). De plus, pour la méme raison, la
somme S de la série entiére est :

Sz P(2).

On peut donc conclure que la somme d’une série entieére associée a une suite stationnaire en 0 est
une fonction polynomiale!

2. Rayon de convergence

a. Lemme d’Abel

Théoréme 1.) Lemme d’Abel

Soit (an)nen une suite a valeurs dans K et zg € C*. Si la suite (an2{)nen est bornée, alors, pour
tout z € C tel que |z| < |zo], la série > a,2™ est absolument convergente.




On suppose que suite (a,z{)nen est bornée. Alors il existe M > 0 tel que |an 2| < M.
Soit z € C tel que |z| < |zo|. Alors, pour tout n € N, on a :

z\" z\"
|anz"| = |anzg | <> <M () ,
20 20

qui est le terme général d’une série géométrique de raison strictement inférieure & 1 car |z| < |zg|.
Par suite, Y |a,2"| est convergente. O

b. Définition et propriétés du rayon de convergence

Soit (an)nen une suite a valeurs dans K. L’ensemble {r € R | (Jan|r™)nen est bornée} est un
intervalle non vide de R.

On note I = {r € Ry | (Jan|r™)nen est bornée}. Alors I contient 0 car (|a,|0™),en est bornée.
De plus, si r € I, alors, pour tout s € [0,7], s € I car, pour tout n € N, |a,|s" < |a,|r™; donc
(lan|s™)nen est bornée.

Il en résulte que I est un intervalle de la forme [0, a). O
Ce lemme justifie la définition suivante :
Définition 3. Rayon de convergence

Soit Y a,z™ une série entiére.
i) On appelle rayon de convergence et on note R la borne supérieure de 'intervalle
I ={r eRy | (Jan|r™)nen est bornée} i.e.

R =sup{r € Ry | (|Jan|r")nen est bornée}.

on convient que R = 400 si l'intervalle I n’est pas majoré.

ii) On appelle disque ouvert de convergence de la série entiere » a,z" 1’ensemble
D(0,R) ={z € C||z| < R}.

iii) Si (an)nen est a valeurs dans R, On appelle intervalle ouvert de convergence de la
série entiere Y a,x™ lintervalle | — R, RJ.

Proposition 1.

Soit Y a, 2™ une série entiere, R son rayon de convergence et z € C.
— Si |z| < R, alors la série numérique »  a, 2" converge absolument.
)

— Si |z| > R, alors la série numérique Y a, 2™ diverge grossiérement.



— On suppose |z| < R. Comme R = sup{r € Ry | (|an|r")nen est bornée}, alors il existe
ro € {r € Ry | (|an|r™)nen est bornée} tel que |z| < rg < R.
Par conséquent, la suite (a,7])nen étant bornée, d’apres le lemme d’Abel, la série Y a, 2™
est absolument convergente.

— On suppose |z| > R. Alors la suite (a,2"),en n'est pas bornée et donc ne converge pas

vers 0. Ainsi, la série Y a,z™ diverge grossiérement.
O

Remarque 2.

Si |z| = R, on ne peut, a priori, rien dire! Il faut étudier la série dans ce cas.

Proposition 2.

Soit Y a,z™ une série entiére, R son rayon de convergence et D son domaine de convergence.
Alors on a :

D(O,R)={z € C||z] <R} c DcD(0,R) = {2 € C | |2| < R}.

e Siz € D(0, R) alors |z| < R. Par suite, d’aprés la proposition précédente, > a,z™ converge
absolument et donc converge. D’ou z € D.
Il en résulte que D(0, R) C D.

e Si 2z ¢ D(0, R) alors |z| > R. Par suite, d’aprés la proposition précédente, > a,z" diverge
grossiérement. D’ou z ¢ D.
Ainsi D(0, R)¢ C D¢ et donc D C D(0, R).

O
Exemple 2.
— Pour la série entiere Y 2™, le rayon de convergence est 1 et son domaine de convergence
est D =D(0,1).
On a

{r € Ry | (r")nen est bornée} = [0, 1].
Donc le rayon de convergence R de > 2™ est :
R =sup|0,1] = 1.
De plus, si |z| =1, [z"] = |z|" =1 i 0, donc Y_ z™ diverge grossiérement.

I en résulte que D =D(0,1).




1
— Pour la série entiere ) ., —2", le rayon de convergence est 1 et son domaine de conver-
=in

2
gence est D = D(0, 1).

On a g
{r € Ry | (57" )nen est bornée} = [0, 1].
n

1
Donc le rayon de convergence R de ), -, —2" est :
“tn

R =sup[0,1] = 1.

. \ N . n
De plus, si |z| =1, |#z”| = # donc, d’apres le critere de Riemann, ) | 25 converge
absolument.

Il en résulte que D = D(0, 1).

Exercice 2.

Z’ﬂ
Déterminer le rayon de convergence et le domaine de convergence des séries entiéres »_ — et
n!

S nlzm.

1. On a "
{reRy| (gr”)neN est bornée} = [0, +-00[.

car, pour tout r € R, %r" est le terme général d’une série convergente - donc converge vers

0 et donc est une suite bornée.

1
Ainsi le rayon de convergence R de 3 —z" est :
n!
R = +o0.

Il en résulte que D = C.

2. On a
{r e Ry | (n!r")nen est bornée} = {0}.

En effet, pour 0 < r < 1, & partir du rang N = E(r) + 1, il existe C' > 0 tel que pour tout
n> N, nlr® > Cn ——— 400 (on peut prendre C' = (N — 1)!7"V)) donc pour tout r > 0,

n—-+oo
la suite (n!r™),ecn n’est pas bornée (le cas r > 1 est immédiat - le faire quand méme pour

vérifier que c’est bien immédiat!).
Donc le rayon de convergence R de Y nlz™ est :

R = sup{0} = 0.

Il en résulte que D = {0}.



3. Calcul du rayon de convergence d’une série entiéere

a. Caractérisation du rayon de convergence

Proposition 3.

Soit > a,z™ une série entiere et R son rayon de convergence. Alors on a les égalités suivantes :
— R=sup{|z| | (anz")nen est bornée} ;

— R=sup{ 2| | (ans")nen converge} ;
— R= sup{ |z] | Zanz" converge} ;

— R= sup{ |z] | Z ap 2" converge absolument}.

On considere les ensembles suivants :
— I ={|z| | (anz™)nen est bornée} ;

— L= { |Z| | (a’nzn)neN Converge};

— I3 = { lz| | Zanz" converge};

— Iy = { |z] | Z anz" converge absolument}.
Pour toute suite (uy,)neny € C™, on a :

> u, converge absolument = Y u, converge = (uy)nen converge = (uy)nen est bornée.

Par suite, on a la chaine d’inclusion :
Iy,CclzClI,ClI.

De plus, on remarque que Iy = {r € Ry | (Jap|r™)nen est bornée}, donc, d’apres le lemme 1,
I; est un intervalle non vide de Ry qui contient 0 et par définition du rayon de convergence,
R = sup I; (potentiellement = +00). Ainsi, on a Iy = [0, R[ ou I; = [0, R].

Comme 0 € I, I; est une partie non vide de R, et donc il posséde une borne supérieure R’
(potentiellement +oo si I, n’est pas majorée). Ainsi, comme Iy C I, on a R’ < R.
Réciproquement : soit 7 € [0, R[. Alors, d’aprées la proposition 1, la série Y a,r™ converge absolu-
ment, donc r appartient & I et donc r < R’. Par suite, R’ est un majorant de [0, R[ d’ou R < R'.
Il en résulte que R’ = R.

Remarque : les inégalités précédentes me pas rigoureuses dans le cas R = 400, mais la preuve
reste analogue dans ce cas.

Ainsi, en utilisant la chaine d’inclusion précédente, on obtient :

R=suply <supls <suply <supl; = R.

d’ot les égalités annoncées. O



Méthode : Minoration et majoration du rayon de convergence

Etant donné une série entiére Y  a,z™ de rayon de convergence R et zp € C, on a :

e la minoration R > |zp|, si on est dans 'un des cas suivants :
i) la suite (an2{)nen est bornée;
ii) la suite (an2{)nen converge;
iii) la série > anz{ converge;
iv) la série > an,z§ converge absolument ;

e la majoration R < |zp|, si on est dans I'un des cas suivants :
i) la suite (anz{)nen n'est pas bornée;
ii) la série Y a, 28 diverge;

iii) la série > |an2{| diverge.

Exercice 3.

1. Déterminer le rayon de convergence de > nz".

2n

2. Déterminer le rayon de convergence de la série entiére > a,z*" en fonction de celui de

dapz™.

1. On remarque tout d’abord que la suite (nl1™),en n’est pas bornée. Donc, comme R =
sup{ |z| | (n2™)nen est bornée}, on a R < 1.
Soit z € C*. Si |z| < 1, la suite (n|z|™),en converge vers 0 par croissances comparées donc
comme R =sup{ |7/| | (nz™)nen converge}, on a R > |z|.
Ceci étant vrai pour tout z tel que |z| < 1, on peut faire tendre |z| vers 1 dans I'inégalité
précédente, ce qui donne R > 1.

Il en résulte que R = 1.

2. Notons R le rayon de convergence de la série entiere > a,2?" et R’ celui de 3 a,,2".
Soit z € C*. On suppose |z| < R. Alors la suite (a,2")nen est bornée et donc la suite
(lan](\/12])*™)nen lest aussi. Or, on a R’ = sup { |2'| | (an2’®")nen est bornée}, donc R’ >
V/|#]. Ceci étant vrai pour tout z tel que |2| < R, on fait tendre |z| vers R et ainsi, par
continuité de la fonction racine :
R > VR.

Soit z € C*. On suppose |z| < R’. Alors la suite (a,2°"),en est bornée et donc la suite
(@n(2%)")nen lest aussi. Or, on a R =sup { |2/| | (@,2"")nen est bornée}, donc R > |2%| =
|z|2. Ceci étant vrai pour tout z tel que |z| < R’, on fait tendre |z| vers R’ et ainsi, par

continuité de la fonction carrée :
R > R

Il en résulte que R’ = v/R.



b. Comparaison

Proposition 4. Comparaison des rayons de convergence

Soit Y anz™ et Y b, z™ des séries entiéres et R,, R leurs rayons de convergence respectifs. Alors
si, & partir d’un certain rang N € N, on a, pour tout n > N :

i) |an| < |bnl, alors R, > Ry ;

ii) a, = O(by,), alors R, > Ry;

iii) a, = o(by), alors R, > Ryp;

iv) |an| N |b,| alors R, = Ry.

i) Soit z € C*. On suppose |z| < Ryp. Alors la suite (b,2")nen est bornée. Comme pour tout
n > N, |ay| < |bnl, on a |a,z™| < |by2"| donc la suite (a,2")nen est bornée. Or, on a
R, = sup{ |Z/| | (anz"™)nen est bornée}, donc R, > |z|. Ceci étant vrai pour tout z tel
que |z| < Ry, on fait tendre |z| vers Ry, et ainsi :

R, > Rp.

ii) On suppose a, = O(by,). Alors il existe M > 0 tel que pour tout n € N, |a,| < M|b,|. On
adpate alors la preuve précédente en remarquant que, pour un certain z € C, si (b,2")nen
est bornée, alors (Mb,2")pen Pest aussi.

iii) Si a, = o(by), alors a,, = O(b,,) d’'out R, > Ry ;
iv) On remarque que |ay,| =~ |b,| implique a, = O(b,) et b, = O(a,). En effet, par
définition, |a,| ~ |bn| < apn, = by, + 0(br) = O(by) + O(by,) = O(by,).
n——+0oo
O

Exercice 4.

27(1 + 5"n?) sin(2)

1. Déterminer les rayons de convergence de z" et de S

Y s Z10"(n+\/3n+1) Z n+1

2. Déterminer le rayon de convergence de > ., d(n)z" ou, pour n € N*, d(n) = #{d €
[1,n] | dln}- B

1. On a:
27(1 + 5™n?)
10°(n + V3n £ 1) novtoo
Or on a prouvé précédemment que » nz" a pour rayon de convergence 1 donc, par com-
27(1 + 5"n?)
10" (n++/3n+ 1)

2" est égal a 1.

paraison, le rayon de convergence de E



Comme sin(z) ~ x,ona:
z—0

sin(z%) 1
n+1 n—too 37
Or le rayon de convergence de Y- 72" est égal & 3 : en effet, pour z € C, la suite ((£)"),en

est bornée si, et seulement si |z| < 3. Ainsi, par comparaison, le rayon de convergence de
sin(37) RN

g —— 322" est égal A 3.
n+1

2. Pour n € N*, on remarque que 1 < d(n) < n. Or les rayons de convergence de Y 2™ et de
> nz" sont tous deux égaux a 1, d’otl, si on note R le rayon de convergence de ), -, d(n)z",
on obtient 1 > R > 1 et ainsi R =1 B

c. Utilisation de la régle de D’Alembert

,(Théoréme 2.) Régle de D’Alembert pour les séries entiéres

Soit > a, 2™ une série entiere de rayon de convergence R telle que, & partir d’un certain rang
N € N, pour tout n > N, a,, # 0. S’il existe £ € [0, +oo[U{+00} tel que :

Gn41 &
an, n—-+4o0o
alors on a :
. 400 sif=0;
R=7= 3 si £ €]0,+o0[;
0 si f = +oo.

Soit z € C. On applique le critére de D’Alembert a la série de terme général u,, = |a,z"|. Alors
on a, pour tout n > N,

n+1
Un+1  |Gp+1R | On+1 |z|
Up, an 2" o |
. q an+1 N
Par suite, si — fou:
an, n—-+oo
7-’fn-‘,—l

— L e R7, alors ——— £|z|. Ainsi, d’apres le critére de D’Alembert, si |z| < %, > up

n n—-+oo

converge et si [z| > %, > u, diverge. Par suite, R = 7.

U

ol o Ainsi, d’apres le critéere de D’Alembert, pour tout
Up, n—+00

z € C*, > u, diverge donc R = 0.

u
5. Ainsi, d’apres le critére de D’Alembert, pour tout z € C*,
Up, n—-+oo

> uy, converge. Par suite, R = 4o00.

— ¢ = 400, alors

— ¢ =0, alors

O

10



Remarque 3.

Attention le critére précédent n’est valable que si (ay, )nen est différente de 0 & partir d’un certain
rang !

Ainsi, pour une série entiere du type Zanz‘P(”) avec ¢ : N — N strictement croissante, on
appliquera directement la régle de D’Alembert sur la série (tout court) > a,2?™ ie. on étudie

la limite de

Zép(’r%‘rl) An+1

Qn

an+1

=0 .|Z<p(n+1)*so(n)|,
Ap 2P\

en fonction des valeurs de z € C* afin de majorer et minorer le rayon de convergence de la série

entiére.

Exercice 5.

1. Déterminer les rayons de convergence des séries entieres

a.n x nn 4 n
an ou a € R; Z%z, Z(Qnil)z;

n>1

P(n) 2" ou
> o) P,Q € K[X].

n>ngo

2. Déterminer les rayons de convergence des séries entieres :

Zn!zzn Zn!z"2 Zn”z(i?)

1. Pour cette question, on remarque que les séries entieres ne sont pas lacunaires et que les
suites (an )nen associées sont non nuls (a partir d’un certain rang). On peut donc appliquer

le critere de D’Alembert pour les séries entiéres :
— Ici, a, = n® pour n > 1 et ap = 0. Ainsi, a partir du rang 1, on a, par continuité de la

fonction x — 2% en 1 :
1 «
n n—-+oo

= Il

an+1
an

Ainsi, le rayon de convergence R de ) ., n*2" est R =

1
1
— Ici, ap, = ?T' pour n > 0. Ainsi, comme pour tout x € R, (1 + %)" ——— ¢, on a:

n—-+oo
<n+1>n L
= e =e€
n n—-+o00

. . n
Ainsi, le rayon de convergence R de Y 22" est R = 1.
n: e

4
— Ici, a, = <2n Z 1) pour n > 0. Ainsi, on a :

An+41
Qn

dn+4)(4n+ 3)(4dn + 2)(4n + 1 4*nint
4 21 =16

Ap+1
(2n +3)(2n +2)(2n 4+ 1)(2n) n—too 24pt n—+o00

2%

11



4
Ainsi, le rayon de convergence R de ) (2 j_ 1) z" est R = %.
n

— On suppose que P, (Q sont des polynomes non nuls. Ici, a,, = % pour n > ng ou

ng = E(max{z € R} | Q(x) = 0})+1 si Q admet des racines réelles positives et ng = 0
sinon (pour s’assurer qu’on me divise par par 0; dans le cas ou @ posséde des racines
positives, ce “max” existe bien car @ étant un polynéme non nul, l’ensemble de ses
racines est fini) et a,, = 0 pour tout n < ng.

On va cette fois utiliser une comparaison avec la premiere série entiere de la question
pour déterminer le rayon de convergence :

Comme P, sont non nuls, il existe p,q € N et des coefficients a;, 5; € K tels que
P=3" o;X"et Q =" B X" avec o, # 0 et B, # 0. Par suite, on a, pour tout
n>mng:

P(n) apn?  ap .

Q(n) n—too Bnd By

Or, pour @ = p — g € R, la série entiére n®z"™ possede un rayon de convergence
5 ) n>1

égal a 1, donc, par comparaison, le rayon de convergence de Zn>n0 %z" est égal a 1.

2. Les séries entieres de cette question sont lacunaires, on ne peut donc pas appliquer le critere
de D’Alembert pour les séries entiéres. On se rabat donc sur le critere de D’Alembert... tout
court !

— Soit z € C*. On pose, pour n € N, u,, = [n!2?"| = n!|z|*" > 0. On peut donc appliquer
la régle de D’Alembert a la suite (up)nen. On a :

Un+1

=(n+1)z]? —— 400" > 17
n n—-+oo

Ainsi, d’apres la régle de D’Alembert, Y u,, diverge.

Par suite, pour tout z € C*, Y nlz™ ne converge pas absolument. Or le rayon R de la
série entiére vérifie R = sup{|z| | >_ n!z"™ converge absolument}, donc R = 0.

— Soit z € C*. On pose, pour n € N, u,, = |n!z"2| = n!|z\"2 > 0. On peut donc appliquer
la régle de D’Alembert & la suite (up)nen. On a :

Un+1 _ (n+ 1)|Z|2n+1

+o0” > 1" silz| >1
Up, n—-+oo

0<1 si|z| <1

N . . 7. 2
Donc, d’apres la régle de D’Alembert, la série numérique > n!z"" converge absolument
si, et seulement si, |z| < 1.

11 en résulte que R =1 car R = sup{|z| | Zn!z”2 converge absolument}.

— Soit z € C*. On pose, pour n € N, u,, = |n"z(3n7rl)| = n"|z|(3:) > 0. On peut donc
appliquer la régle de D’Alembert & la suite (uy)nen. On remarque que, comme n <

E(32),ona (}") < (*) et donc :

3n+3\ _ (3n) _ (3n 3(3n+2) 3n+1)_1 > 3n <9 — 6n .
n+1 n n (2n+2 1 n—+o00
| Gy —

—~|—

2n +1)

>1

12



et ainsi,

Lot — (n+1) ("“) ] G =C) >{+o<> >17 sz 21
n n—-+oo

Un 0<1 si|z] <1

h p s . s . 3n
Donc, d’apres la régle de D’Alembert, la série numérique » | n”z( ) converge absolument
si, et seulement si, |z| < 1.

11 en résulte que R =1 car R = sup{|z| | Zn"zeﬂ converge absolument}.

Exercice 6. Apparté : Transformée d’Abel
Soit (an)nen €t (bp)nen deux suites & valeurs dans K. On considére les séries > apb, et > ap.
On note (Sy,)nen la suite de ses sommes partielles de > anby, et (A, )nen celle de Y ay,.
1. Montrer que, pour tout N € N,

N-1
Sy = Anby = > Ap(bng1 — b).

n=0
Cette identité est appelée transformée d’Abel des sommes partielles de la série > a,by,.

2. En déduire le critére d’Abel : si
e (A,)nen est bornée;

e b, ——0et
n—-+4oo

e > (bpt1 — by) est absolument convergente,
alors la série Y a,b, converge.

3. Montrer le critére des séries alternées en utilisant le critére d’Abel.

1. On pose S_1 = 0et A_; = 0. Soit N € N On remarque que, pour tout n € N, a,, =

13



A, — A, _1, d’ou on obtient :

N
SN = Z anbn
n=0
N N
= ZAnbn - ZAnflbn
n=0 n=0
N N-1
= ZAnbn - Z Anbn+1
n=0

n=-—1
N—-1
= Anbn+ Y An(bn — bny1) — A_1bo
n=0
N—-1
= Anby — > Ap(bnt1 —bn).

n=0

Remarque : la transformation d’Abel est l’analogue pour les suites de l'intégration par parties

pour les fonctions de la variable réelle ; en effet,

— prendre la somme partielle de la série associée a une suite est l’analogue de la primiti-
vation pour une fonction,

— prendre la différence de deux termes successifs d’une suite est l’analogue de la dérivation
pour une fonction.

. Supposons les hypothéses vérifiées. Comme (A, ) ecn est bornée, il existe M € Ry tel que,

pour tout n € N, |A,| < M. Ainsi, pour tout n € N :

— |Anb,| < M|by,| ~—+_% 0; donc la suite (Anbn)nven converge (vers 0) ;
n——+00

— |An(bpt1 — bp)| < M|bpt1 — by| qui est le terme général d’une série convergente donc,
par comparaison, » . Ay (by4+1—by) converge absolument et donc converge. Ainsi, la suite
(Zfz\:ol Ay (b1 — b)) ven des sommes partielles de cette série converge.

Par suite, par transformation d’Abel des sommes partielles Sy pour N € N (question 1), la

suite (Sn)nven s’écrit comme combinaison linéaire de suites convergentes et donc converge.

Il en résulte que la série > a,b, = (Sy)nNen converge.

. Soit (un)nen une suite décroissante de réels positifs qui converge vers 0. Montrons que la
série > (—1)"u,, converge.
On pose, pour n € N, a, = (—=1)", b, = up, et A, =Y ;1 ax. Alors :

e On a, pour n € N,

- 1— (=1ntt 1 sin est pai
AnZZ(—l)k: (-1 :{ si n est pair

P 2 0 sin est impair

donc (Ap)nen est bornée par 1.

o b, =u, —— 0.
n—-+o0o

e Pour n € N, |by11 — bp| = uy, — uptq car la suite (uy,)nen est décroissante. Par suite, la
série Y |bpt1 — bn| = D (un — up+1) est télescopique et donc convergente car de méme
nature que la suite convergente (up)nen. Ainsi, Y (bn+1 — by,) converge absolument.

Par suite, d’apres le critere d’Abel, la série > (—1)"u, = > a,b, converge.
Nous avons donc (re)démontré le critére des séries alternées.
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Exercice 7. FEtude d’une série entiére sur la frontiére du disque

On considere la série entiere E —.
n>1

1. Montrer que son rayon de convergence est 1. Que dire de la convergence en z =17

Zn
2. Soit zp € U~ {1}. En utilisant le critéere d’Abel (exercice 6), montrer que E Z0 converge.
n
n>1

n
3. En déduire le domaine de convergence de E —.
n>1

n

n

z
1. On note R le rayon de convergence de Z —. Pour n € N*| on pose a,, = % > 0. Alors
n>1

Ap+1
Qanp

n
= )

n+1 n—s+oo

donc R = % =1 d’apres la regle de D’Alembert pour les séries entiéres.

) 1
Evaluer en z = 1, on obtient la série harmonique Z — qui est divergente.

n>1
2. On reprend les notations de 'exercice 6. Pour n € N* on pose a, = z7, b, = % et
A =30 ak. Alors :
e Comme |zg| = 1, on a, pour n € N*,
n
1— n+1 1 n+1 )
=[St < L= Ll
s |1720| |1720| |1720|

donc (A, )nen est bornée par ﬁ
1

— 0.

" n—+4oo
e Pour n € N*, |bp1 —by| = 1 — n-lu' Par suite, la série > o [bnt1 — bn| = Zn21(% —
est télescopique et donc convergente car de méme nature que la suite convergente

e b, =

1
1)
(L)nen+- Ainsi, >, <1 (bpt1 — bp) converge absolument.

ZTL
Par suite, d’apres le critére d’Abel (exercice 6 question 2.), la série Z Z0 converge.
n>1

3. On note D le domaine de convergence de la série entiere. Comme R =1, on a

D(0,1) € D C D(0,1)

De plus, pour z € U, on a, d’apres les questions 1 et 2, z € D si, et seulement si, z # 1.

Par suite, D =D(0,1) \ {1}.
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Partie B

Propriétés des séries entieres

1. Opérations sur les séries entieres
a. Combinaisons linéaires

Proposition 5. Produit par un scalaire

Soit Y a,z™ une série entiere et A € C*. Alors > Aa,z™ et Y a,z™ ont le méme rayon de
convergence.

Soit z € C. Comme A # 0, la suite (Aa,z™)nen est bornée si, et seulement si, (a,2")nen est
bornée.
Il en résulte que Y Aa,z" et > a,2"™ ont méme rayon de convergence. O

Proposition 6. Somme

Soit " anz™ et Y b,z™ des séries entiéres et R,, Ry leurs rayons de convergence respectifs. Alors
le rayon de convergence R de la série entiere > (ay + by,)z" vérifie :

— si Ry # Ry, R = min(R,, Ry)
— si Ra = Rb, R 2 Ra(z Rb).

Soit z € C. Si (an2™)nen et (bnz™)nen sont des suites bornées, alors la suite ((an + bn)2™)nen est
bornée, donc |z| < R. Ceci étant vrai pour tout z € C tel que |z| < min(R,, Rp), on obtient :

R > min(R,, Ryp).
Supposons que R, # Ry. Quitte a échanger R, et R;, on suppose que R, < Ry.

Soit z € C tel que R, < |z| < Ry. Alors la suite ((an, + bp)2™)nen n'est pas bornée car (anz")nen
n’est pas bornée et (b,z")nen est bornée.

Remarque : pour démontrer le fait précédent, on peut utiliser la contraposée de I'assertion :
St (Un)neN €t (Un)nen sont bornées, alors (u, + v, )nen est bornée.

Ainsi, on a |z] > R. Ceci étant vrai pour tout z € C avec R, < |z| < R}, on obtient min(R,, Ry) =
R, > R.
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Il en résulte que, si R, # Ry,
R = min(R,, Ryp).

Proposition 7.| Somme d’une combinaison linéaire de séries entiéres

Soit > an,z™ et Y b,z"™ des séries entiéres de rayon de convergence respectifs R,, Ry et A\, u € C.
On pose R = min(R,, Rp). Alors, pour tout z € C tel que |z2| < R, on a :

+00 +oo +oo
Z(Aan + ubp)z" = A Z anz" + Z bpz".
n=0 n=0 n=0

Les séries entiéres Y Aa,z™ et > ub,z™ sont de rayons de convergences supérieurs & respective-
ment R, et Ry (égaux si A\, # 0 (proposition 5) et +o0 sinon) donc, d’apres la proposition 6,
la série entiere > (Aay + pb,)2z™ est de rayon de convergence supérieur & R = min(R,, Ryp). Par
suite, pour tout w € C tel que |w| < R, w appartient au disque ouvert de convergence de la série
entiere > (Aa, + pb,)z" et donc, d’apres la proposition 1, Y (Aa,, + by, )w™ converge absolument
et donc converge ; de plus, comme |w| < R < R,, et |w| < R < Ry, par un raisonnement similaire,
les séries numériques > a,w™ et > b,w™ convergent.

Ainsi, par linéarité de la somme d’une série, on obtient, pour tout w € C avec |w| < R :

+oo +oo “+o0

Ay + pby )w™ = A an,w™ + 1 bpw™.
> ( ) > >
n=0 n=0 n=0

Exercice 8.

Déterminer les rayons de convergence et la somme dans le disque ouvert de convergence des
séries entieres suivantes :

Z ch(n)z" Z sin(nf)z" (ou 6 € R).

1. On a, par définition, pour tout z € R, ch(z) = Ez"';fz.l

La série entiere ) e™z" a pour rayon de convergence = et la série entiere ) e™"2" a pour
rayon de convergence e donc la série entiére Y ch(n)z™ a pour rayon de convergence R =

min(L,e) =1 et on a, pour tout z € C tel que |z| < 1 :

+oo +oo +o00
1 1 11 11
h n_ - n_n - -n,n _ = — .
HZZOC (@) QnZ:[)e “ +2nZ:O€ i 21—ez+21—§
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iz —ix
e —e

2. On a, par définition, pour tout z € R, sin(z) = “—=;
Les séries entieres > e?2" et 3" e~"%2" ont pour rayons de convergence 1 donc la série
entiere > sin(nf)z"™ a pour rayon de convergence R > 1 et on a, pour tout z € C tel que

|| <1:
1 1
nb n —inf _n
27-26 z —27-26 z
n=0 n=0

“+o0
Z sin(nd)z"
n=0

11 11
T 21-—e€7 2i1—e %
—+o0 .
0
Z sin(nd)z" = sin(9)2 PR
o 1—2cos(0)z+ =

Maintenant, déterminons exactement le rayon de convergence R de > sin(nf)z".
Si 0 € 27Z, alors sin(nf) = 0 pout tout n € N. Donc dans ce cas, R = +o0.

Supposons 6 ¢ 2nZ. Comme la suite (sin(nd))neny ne tend pas vers 0 alors la suite
(sin(nf)1™),en n'est pas le terme général d’une série convergente et donc R < 1.
Il en résulte que R = 1.

b. Produit de Cauchy

On adapte ici la notion de produit de Cauchy au cas de séries entieres :

Définition 4., Produit de Cauchy de deux séries entieres

Soit Y anz™ et Y b,z™ des séries entieres. On appelle produit de Cauchy des séries entiéres
> anz" et > b,2", la série entiere > ¢, 2™ ol, pour n € N,

n
Cp = E akbn,k.
k=0

Proposition 8. | Produit de Cauchy

Soit " anz™ et > b, 2™ des séries entiéres et R,, Ry leurs rayons de convergence respectifs. Alors
le rayon de convergence R du produit de Cauchy > ¢,2™ des séries entieres > a,z" et > b, 2"
vérifie R > min(R,, Ry) et on a, pour tout z € C tel que |z| < min(R,, Rp) :

+oo —+oo n +oo +oo
E 2" = g apbp—pr | 2" = g anz" E bp2" | .
n=0 n=0 \k=0 n=0 n=0

On rappelle le résultat de Sup’ suivant sur le produit de Cauchy de deux séries absolument
convergentes :
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Soit >~ A,,, > B, des séries numériques et on pose, pour n € N, C,, = > A By
Si Y A, et Y B, convergent absolument, alors ) C,, converge absolument et on a :

2o () ()

Preuve succincte : Comme Y A,, Y. B, converge absolument, les familles (4,)nen,
(Bn)nen sont sommables et donc, d’aprés le théoréme de sommation par paquets ap-
pliqués aux partitions N* = | | .y Ap ot A, = {(p,q) e N? |p+qg=n} et N> = | . Hy
ou H, = {(n,m) € N?}, la famille (4, B,)(n,m)enz est sommable et on a :

400 +oo +o0
> Cu= ) AnBn= (Z An> (Z Bn> :
n=0 (n,m)EN2 n=0 n=0

Le résultat précédent reste valable en supposant qu’une des deux séries converge et l’autre
converge absolument : il s’agit du théoréme de Mertens (voire une preuve de ce théoréme
dans le chapitre ”"Séries numériques et vectorielles”.

Soit z € C tel que |z| < min(R,, Ry), d’apreés la proposition 1, les séries > a,2" et > b,z"
convergent absolument. On pose, pour n € N, A, = a,2", B, = bpz, et C,, = ZZ:O ApB, k.
On remarque alors que, pour n € N,

n n
C, = g apz" by 2"k = ( E akbn_k> 2" =c, 2"
k=0 k=0

D’apres le résultat précédent, la série > C,, = > ¢, 2™ converge absolument et on a :
+oo “+o0 +oo —+o0 —+oo —+o0
> et =30,= (S (380) = (St (S0
n=0 n=0 n=0 n=0 n=0 n=0
De plus, comme Y ¢, 2™ converge absolument, on a R > |z|. Ceci étant vrai pour tout z € C avec
|z| < min(R,, Rp), on obtient R > min(R,, Rp). O
Exercice 9.

Déterminer le rayon de convergence et la somme du produit de Cauchy de > 2™ et 1 — z. Qu’en
conclure ?

Pour n € N, on pose a, = 1;b, =0sin>2;by=1et by = —1. Alors > a,z" = > 2" et
> b,z™ = 1— z. Le rayon de convergence de Y a,2" est R, = 1 et celui de > b,,2" est Ry = +00
donc, d’apres la proposition 8, le rayon de convergence R du produit de Cauchy ¢, 2™ des séries
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entieres Y a,z™ et Y b, 2™ vérifie R > min(1, +00) = 1 et on a, pour tout z € C tel que |z| < 1:

+oo +oo n +oo +oo 1

3 o =55 (St 7 = (Sr) (S0) = pt- =1

n=0 n=0 \k=0 n=0 n=0
De plus, on remarque que cy = agby = 1 et, pour tout n € N* :

n
Cn =) akbp_k = an.bo + an_1by = 1.1+ 1.(=1) =0,
k=0

La suite (¢, )nen étant stationnaire en 0, le rayon de convergence de ) ¢, 2" est donc R = +o0.

On rmarque alors que dans ce cas R > min(R,, Rp) : le rayon de convergence du produit de
Cauchy peut donc "augmenter” par rapport au minimum des rayons des séries entieres dont il
est issu.

2. Régularité d’une série entiere

a. Convergence normale

Théoréme 3.

Soit Y a, 2™ une série entiére de rayon de convergence R > 0. Alors :

— la série entiére Y a,2" converge normalement sur tout compact de D(0,R) (= C si

R =+00);
— la série entiére > a,z™ converge normalement sur tout segment de | — R, R[ (= R si
R = 40).

— Soit @ > 0 avec a < R. Montrons la série entiére Y a,,2™ converge normalement D(0, a).
On note f, : z — a,2".
On a, pour n € N :
[frlloe = sup (lan||2]") < [an|a™.
2€D(0,a)

Or R =sup{r € Ry | > |a,|r™ converge}, donc comme a < R, |a,|a™ est le terme général
d’une série convergente.
Par suite, pour tout 0 < a < R, la série entiére Y a,, 2" converge normalement sur D(0, a).

Ainsi, comme tout compact de D(0, R) est inclus dans un disque D(0,a) avec a < R, on a
convergence normale de Y a,,z" sur tout compact de D(0, R).

— Soit @ > 0 avec a < R. Montrons la série entiere ) a,z™ converge normalement [—a,al.
On note f, : x — ax™.
On a, pour n € N :

[fnlls = sup  (lan|lz]") < |an|a™
z€[—a,a]
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Or R =sup{r € R | > |an|r™ converge}, donc comme a < R, |a,|a™ est le terme général
d’une série convergente.
Par suite, pour tout 0 < a < R, la série entiére ) a,z™ converge normalement sur [—a, a].

Ainsi, comme tout segment de | — R, R[ est inclus dans un intervalle [—a, a] avec 0 < a < R,
on a convergence normale de Y a,z™ sur tout segment [—R, R].

Remarque : on aurait bien-sur pu utiliser le point précédent pour démontrer le cas réel.
O

Remarque 4.
Sur le disque D(0, R), la convergence n’est pas normale en général : par exemple, les séries

.s n z
entiéres ) z" ou ), -, %~ ne convergent pas normalement sur D(0, 1).

b. Continuité

Soit Y a,2™ une série entiere de rayon de convergence R > 0. Alors sa somme

+o0
S:z— E anz"
n=0

est continue sur le disque ouvert de convergence (0, R).

En particulier, S est continue sur l'intervalle | — R, R].

— D’apres le théoréme précédent, la série de fonctions » a,z™ converge normalement sur
tout compact de D(0, R) et les fonctions z +— a,2" sont continues sur C et donc sur
D(0, R) car polynomiales.

Ainsi, d’apres le théoréme de continuité des séries de fonctions, S : z —
continue sur D(0, R).

+oo
n=0

a,z" est
— Cas réel : D’apres le théoréme précédent, la série de fonctions ) a,z™ converge normale-
ment sur tout segment de | — R, R[ et les fonctions z — a, 2™ sont continues sur R et donc
sur | — R, R] car polynomiales.
Ainsi, d’apres le théoréme de continuité des séries de fonctions, S : x — >
continue sur | — R, R|.
Remarque : on aurait bien-sur pu utiliser le point précédent pour démontrer le cas réel.
O

—+o0

n
n—po Qnx" est

On se pose alors la question de la continuité de la somme d’une série entiére de rayon de convergence
R aux bornes de l'intervalle | — R, R|. Le théoréme suivant nous fournit la réponse :
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,(Théoréme 5.) Théoréme d’Abel radial

Soit Y a,a™ une série entiére de la variable réelle de rayon de convergence R > 0 et de somme
S.Si Y a,R"™ converge, alors

—+oo —+o0
S(z) = E anr" ——— anR",
r—R~
n=0 n=0

i.e. S est définie et continue a gauche en R.

Quitte & changer la variable x en /R, on peut supposer que la rayon de convergence de Y a,a"
est R=1.

On suppose que Y a,, converge vers un certain S € C. Montrons que S(z) —— S.
rz—1-

Pour n € N, on note S,, la somme partielle d’ordre n et R, le reste d’ordre n de la série
(convergente) Y a,. Rappelons que (R, )nen converge vers 0.

Soit z € | —1,1] et N € N. On note Sy (x) la somme partielle d’ordre N de la série > a,x™.

On s’inspire de la technique utilisée dans 1’exercice 6 pour obtenir la transformation d’Abel, en
se basant sur 1’égalité a,, = R,—1 — R, :

N
Sn(z) — Sy = Z G, (™ =1)

n=l=g, \-R,

n=1
N-1 N
— Ro(z™*'=1)= ) Rn(z" - 1)
n=0 n=0
N-1

n=0
N-1
Sn(@)—Sy = (z-1)) Rpz"+(1-z")Rn
n=0

En passant a la limite quand N tend vers U'infini dans I’égalité précédente, on déduit que > R,a"
converge et on obtient :

400
S(z)—S=(x—-1) ZRnx".
n=0

De plus, cela implique que le rayon de convergence de la série entiére la série entiere Y R, 2" est
supérieur ou égal a 1 et donc, en particulier, pour tout = € |—1,1[, >~ R,,x™ converge absolument.
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Soit & > 0. Alors il existe N € N tel que, pour tout n € N, |R,,| < § et donc, pour x € [0, 1],

+oo
S(z) =8| < |z—1])_ |Ralz"
n=0

N—-1 & “+oo
< (1-2a) Z |Rn|z”+§ Z a"
n=0 n=N
——
=N
=

IN

N—-1
(1—2) ZO |Rp|a™ + ng
N—-1 5
— < (1-— -,
5@ =81 < (10 3 IR+

N—1
Or,on a (1 —x) Z |R,|z" —— 0, donc il existe 6 > 0 tel que, pour tout z € [0, 1] vérifiant
"0 r—1—
|z —1] <4, ona:
N—1

€

1-— alr < =,

(-0) 3 1Rnla” <
Par suite, pour tout « € [0,1] tel que |[x — 1] < J, on a :

= e € €
[S(z) =S| <(1—x) nEZO |Rn|m"+§ < §—|— 5 =¢
Il en résulte que |S(x) — S| —— 0. O
Tz—1—

Corollaire 1. Théoréme d’Abel radial

Soit Y a,z™ une série entiére de rayon de convergence R > 0 et de somme S. S’il existe § € R
tel que " a,, (Re?)™ converge, alors

“+o00 +oo
S(xew) _ E emeanx" N E e’meaan’
r—R~
n=0 n=0

En particulier, si Y (—1)"a, R™ converge, alors S(x) — o (=1)"a, R™.
rz—=—R
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Pour n € N, on pose b,, = a,,¢™’. Considérons la série entiere > b, 2" de somme f. Comme, pour
tout n € N, |b,| = |an|, D bn2™ est de rayon de convergence R et, par hypothese, > b,R" =
> an(Re?)™ converge.

Par suite, d’aprés le théoreme d’Abel radial, on a :

+oo “+o0 “+oo
fla) = Z bpz" ——— b, R" = Z ema, R"™.
n=0 e R n=0 n=0
De plus, on a, pour tout =z € | — R, R :
“+o0 +oo —+o0
flx) = Z bpa™ = Z Mg,z = Z ema, (ze?)" = S(xe'?),
n=0 n=0 n=0
donc :
+oo
S(xe') = f(z) —— e™a, R
r—R~ "0

Corollaire 2.

Si > a,x™ est une série entiére de la variable réelle, alors sa somme est continue sur I'intervalle
de convergence de la série entiere.

On considére une série entiére > a,2" de rayon de convergence R et de somme S. D’apreés le
théoréme 4, S est continue sur | — R, R[. De plus, si S est définie en R (resp. en —R), > a, R"
(resp. > (—1)"a,R™) converge et ainsi S est continue en R (resp. en —R) d’apres le théoréme
d’Abel radial.

Il en résulte que S est continue sur son domaine de convergence. O

Remarque 5.

— Attention! Si la somme S de la série entiére »_ a,z™ admet une limite en R~, cela
n’implique pas que la série > a, R" converge !

Par exemple, on a S(z) =), _,(=1)"a" = H% -0 5 et la série Y- (—1)" diverge.

— Les théorémes taubériens sont des réciproques partielles du théoréeme d’Abel radial : voire
I’exercice 18

Exercice 10.

+o00
T
1. Montrer que f : z — — est continue sur |—1, 1|.
que f ngl > [-1,1]
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xn

In(n)

—+oo
2. Montrer que g : © — Z est continue sur [—1,1].
n=2

1. La fonction f est la somme de la série entiere ) -, Z—Z qui est de rayon de convergence 1.
Ainsi, f est continue sur | —1, 1[. De plus, par comparaison & l'intégrale de Riemann conver-
gente > =7 (2> 1), les séries >, ) =z et Do (_nlz)n sont absolument convergentes et
donc convergentes. Par suite, d’apres le théoréme d’Abel radial est continue en +1 et donc

sur [—1,1].

2. La fonction g est la somme de la série entiere > -, % qui est de rayon de convergence
1. Ainsi, g est continue sur | — 1,1[. De plus, comme la suite (ﬁ)nel\g est décroissante
et tend vers 0, d’apres le critere des séries alternées, la série ), -, % convergente. Par

suite, d’apres le théoréme d’Abel radial est continue en —1 et donc sur [—1,1].

Remarque :la série ) -, ﬁ est divergente (car, par exemple, pour n > 2, ﬁ > %) donc

g n’est pas définie en 1 et on peut montrer (voire exercice suivant) que g(x) —— +o0.
r—1-

Exercice 11.

Soit (an)nen une suite de réels positifs telle que la série entiere > a,z" est de rayon de
convergence 1. On note S la somme de la série entiére. Montrer que si Y a, diverge, alors
S(z) —— 4o0.

r—1—

On note (S, )nen la suite des sommes partielles de Y a,,.

On suppose que Y a, diverge. Montrons que S(z) ﬁ +ooie. VM eR,,3II>0,Vze
] —1,1[ |1 —=2| <4, S(zx) > M.

Soit M € R,. La série étant divergente et a terme positifs, on a S, m +o0. Par suite, il
existe N € N tel que Sy > M + 33 (> M).

On pose alors § =1 — 1{/% Alors § € ]0,1[ et donc, pour tout z € | — 1,1] tel que |1 — x| <4,
onal<1l—-4§<z<1, dou, pour tout n < N,

x"ZmNE(l—é)N:%.
SN

et donc :
+o0 N M N
_ n o> ns 7 _ ]
S(x) Zan:c _Zanx > SNZan M
n=0 n=0 n=0
~——
SN

I1 en résulte que S(xr) —— +o0.

r—1-
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c. Série entiere dérivée
Définition 5. Série entiére dérivée
Soit Y a, 2™ une série entiere. On appelle série entiére dérivée de 3 a, 2", la série entiére

Z(n + Dapy12™.

Soit Y a,z™ une série entiére. Pour tout k € N, > a,2" et la série entiére > a,, 412" ont méme
rayon de convergence.

Soit z € C*. On a, pour tout n € N :

1
n __ n+k
Ap+ k2 = Qp4gR ka
Donc la suite (@, 12")nen est bornée si, et seulement si, la suite (@, 42" *),en est bornée. Or
cette derniere est bornée si, et seulement si, la suite (a,2™)nen (car il s’agit de la "méme” suite
a laquelle on a ”ajouté” un nombre fini de terme).

Par suite, Y a,2™ et > ap 2™ ont méme rayon de convergence. O

Proposition 9.

Soit > a,2z™ une série entiere. Alors Y a,z™ et sa série entiere dérivée > (n + 1)a, 112" ont
méme rayon de convergence.

On note R le rayon de convergence de > a,z" et R’ celui de Y (n+ 1)a,y12™. D’apres le lemme
précédent, > (n + 1)an,+12™ et Y na,z™ ont méme rayon de convergence R’.

Soit z € C* tel que |z| < R'. Alors la suite (na,z")nen est bornée et donc (a,z")nen Uest aussi;
d’ott |z| < R. Ceci étant vrai pour tout z tel que |z| < R’, on a R’ < R. Montrons I'inégalité dans
I’autre sens :

Soit z € C* tel que |z] < R et p € R tel que |z| < p < R. Alors la suite (a,p™)nen est bornée,
disons par une constante M > 0. Ainsi, pour tout n € N, on a, comme 0 < % < 1, par croissances
comparées :

n n
|na,z" =n <|Z|) lanp™| < Mn <|Z|> — 0
p ~—— p B=rED
<M

Il en résulte que |z| < R'. Ceci étant vrai pour tout z tel que |z| < R, on a R < R'.
Ainsi, R' = R. O
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Corollaire 3.

Soit Y a,2" une série entiére. Les séries entieres Y a,z™ et Y ;272" ont méme rayon de

convergence.

Les séries enticres ) ;22" et 35 o) #2=12" sont "égales” donc ont le méme rayon de conver-

gence.

De plus, la série dérivée de 3, - “=t2" est 35, o (n+1);252" = 3 < a,2™ donc, d’apres la

proposition précédente, >, - a,z" et Y -, #=Lz" ont méme rayon de convergence.

2 n an_,n+1 A
Il en résulte que - anz" et ) 72""" ont méme rayon de convergence. O

Corollaire 4.

Soit 3~ a,, 2" une série entiére et k € Z. Les séries entieres Y a,2" et > n*a, 2" ont méme rayon

de convergence.

Pour le cas k£ € N, on raisonne par récurrence en utilisant la proposition 9 et le lemme 2. Puis,

pour le cas négatif, on raisonne de nouveau par récurrence en utilisant le corollaire 3 et le lemme
2. O

Exercice 12.

Montrer que pour tout a € R, Les séries entiéres > a,2" et la série entiere ), -, n%a,2" ont
méme rayon de convergence.

Soit & € R. On pose k = |a]. Alors on a, pour tout n € N*, n¥ < n® < nFtlsia > 0 et
k+1 ko ; ; k k+1

n*tt <n® <n®sia < 0. D’apres le corollaire 4, 3, o, n*an2™, 30 o1 n*la, 2" et 3 a,z" ont

méme rayon de convergence, donc par comparaison, y , a,z" et la série entiére Zn21 n%a,z"™ ont

méme rayon de convergence.

3. Dérivée de la somme d’une série entiére réelle

[ Théoréme 6.) Dérivation d’une série entiére réelle

Soit > an,x™ une série entiere de la variable réelle de rayon de convergence R > 0. Alors sa
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somme f est de classe C™ sur | — R, R[ et on a, pour k € N et pour tout z € | — R, R :

+oo
F®(z) = k! Z (Z) anz" ",

n=k
En particulier, on a, pour tout n € N :

F(0)

n!

Ay —

D’apres la proposition 9, Y- o, na,z" ! = Y (n+1)a,4+12™ a pour rayon de convergence R. Par
suite, les séries entiéres Y a,x™ et Y. o, na,z™ ! convergent normalement sur tout segment de
] — R, R[. On peut alors vérifier les hypothéses du théoréme d’interversion dérivation/somme :

e pour tout n € N, f,, :  + a,z" est une fonction polynomiale et donc est de classe C'* sur
] — R, R[ et on a, pour tout x € | — R, R| :

fé(x)z{o . sin=0

NapT sin>1

e > fn converge simplement sur | — R, R[ car > f,, converge normalement sur tout segment
de | — R, R|[.

e > f} converge uniformément sur tout segment de | — R, R[ car > f], = >, <, naya"™~
converge normalement sur tout segment de | — R, R|.

1

Ainsi, d’apres le théoréme d’interversion dérivation/somme, f : x — Zi% anx™ est de classe C*
sur | — R, R et, pour tout € | — R, R[ :

+oo ! ~+o00 +o0
f(z) = (Z fn) (x) = Z fi(z) = Znanx”_l.

On obtient alors, par récurrence en utilisant le résultat que 'on vient de démontrer (ou on aurait
pu directement utiliser le théoréme d’interversion dérivation/somme version C*° dés le départ!)
que f est de classe C* sur | — R, R] et, pour tout k € N, pour tout « € | — R, R| :

400 dk +oo +oo -
F® () = wx" = Z n(n —1)..(n — k+ Dayz™* = k! Z <k) anz™ ",

n=0 n==k n=~k

Par suite, on obtient, en évaluant 1’égalité précédente en x =0 :
F®(0) = ay,.k!

D’ou, pour tout n € N,
F™(0)

n!

Ay =
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Exemple 3.

> _n>1na" a pour rayon de convergence 1, et pour tout x € | —1,1]

+oo

E ng = —2
— )2’

n=1 (1 1})

La série entiere ) -, nz" a pour de rayon de convergence 1 car elle a le méme rayon de convergence
que la série entiere »_ z™ (Corollaire 4). De plus en appliquant le théoréme 6 & la série Y 2", la

fonction f: 2+ 37 2™ est de classe C* sur | — 1,1[ et, comme, pour tous n € Net z € R :
d n n—1
—" =na",
dz

on a, pour tout x € | — 1,1[ :

-
i
B
I [ I
ME iMs g
5 &= IM
= H: &3:

et on avait, par somme géométrique, f(z) = ; donc :

1 / n—1
—(1_x)2:f(x)=an .
On remarque alors que, pour = € | — 1,1, nz™ = xna™"! pour obtenir :

T

+oo
nz::lnm = g (@) = e

Exercice 13.

Montrer que, pour tout k € N et pour tout x € | — 1,1[ :

+oo

1 n+k\ ,
(1 — )+ ‘2( k >”” '
Montrer que la formule est encore valable pour z € D(0,1) a la place de z € | — 1, 1].
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“+o0

— La série entiere ) 2™ est de rayon de convergence 1 donc f:x — > ") 2™ est de classe
C® sur | — 1, 1] (mais ¢a, on le sait déja puisque f coincide sur | — 1, 1] avec une fonction
bien connue!) et, comme, pour tous k,n € Net z € R :

q*
dxk

on a, pour tous k e Net z € | —1,1[ :

¥ ()

F®(x)

+oo
De plus, on remarque que, pour z € | — 1,1], f(x) = Zx”
n=0

touskeNetze|—1,1]:

k!
(1 —z)kt1

-

0 sin<k

| — o
—nb_gn—k gin>k

(n—k)!

et donc que, pour
1—=z

— 1B () = R f (" Z k)x”

n=0

D’ou le résultat annoncé en simplifiant par k!.

— Soit z € D(0, 1) \ {0}. Considérons la série entiere > z"z™ de la variable réelle (ici x).
Alors la rayon de convergence de cette série entiére est R = ﬁ Par suite, la fonction donc

frxm—

;:Z% 2"z™ est de classe C™ sur | —1, 1] et on a, pour tous k € Net z € | — R, R|,

de maniére analogue au calcul précédent :

9 (z)

P (z)
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De plus, on remarque que, pour tout = € | — R, R[, on a |zz| < 1 donc :

+oo +oo 1
B) = 2"x" = xz)" =
fla) = 3 mam = S (e =
n=0 n=0
et ainsi, par dérivation successives, pour tout k € N et tout z € | — R, R| :

klzk = n+k
—_— = f(k)(:r) = kl2* E < )x"
_ k+1
(1 — zz)kt =\ k

D’oll, en simplifiant par k!z* # 0, on obtient :

(e

n=0
On évalue alors en z =1 € | — R, R[ (car, comme |z| < 1, R= ﬁ > 1) et on obtient :
+oo
1 n+k\ ,
(12T ‘2( k )

avec z € D(0,1) (la formule étant vraie également pour z = 0).

4. Primitive de la somme d’une série entiére réelle

,(Théoréme 7.) Primitive d’une série entiére réelle

Soit > a,z™ une série entiére de la variable réelle de rayon de convergence R > 0, F une
primitive sur | — R, R[ de sa somme f. Alors, pour tout t € | — R, R[, on a :

+oo xn+1
F(x) = F(0) +n§ann+ T
Exemple 4.
On a, pour tout z € | — 1, 1],
+oo
x
In(l—2z)=-— —
n(l —x) Z -
n=1
En effet, In(1 — z) = — [ %;, d’ou
+0  p41 oo n
x x
In(l—2z)=-— =— —
n( ?) n+1 Z n
=0 n=1
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D’ou on déduit :

ot =2 5 . A ’ 5
En effet, la série >, -, ( n) converge d’apres le critere des séries alternées et donc, d’apres

le théoréme d’Abel radial, on obtient :

+
3

lim Z — =— lim In(1 —2)=—1In(2).

rz——1 z——1

3
Il
-

Exercice 14.

n
On considere la série entiere E — de somme notée S.
n
n>1

In(1 — z)

(1 —1¢) o
/0 ———=dt = —((2).

1. Montrer que S est une primitive de z — — sur | —1,1].

2. En déduire que :

t

"

1. La série entiere ) o, &— " est de rayon de convergence 1 donc, en notant f sa somme sur
] —1,1[, on a, pour tout x € | — 1,1],

/f £)dt = io/ tnldt T _ §a)

n= 1
De plus, on a, pour tout x € | — 1,1[\{0} :
too = 1
n(l— x)
=5t 1R
n=1
La fonction 2 — —2E=2) &tant de limite 0 en 0, 'intégrale fo (1 8 gt converge et on a
alors, pour tout z € | —1,1[ :
¥ Y In(l—¢
) = / F(t)dt = / )Y
0 0 t
Par suite, S est une primitive de x — —@ (prolongé par 0 en 0) sur | — 1,1].

2. La série de Riemann }, -, = est convergente car 2 > 1 donc S est définie et continue en

11n1 t)

1 d’apres le théoreme d’Abel radial. De plus, l'intégrale ) dt est bien définie car
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x> 7@ (prolongé par 0 en 0) est continue sur le segment [0, 1]. Par suite :

1 a3 +oo
In(1 —¢ In(1 —¢ 1
/ RO g b [ 2D gy i —S@)=-5W == =.
0 t z—1= Jo t z—1- —n
Exercice 15.
Déterminer une suite (a,)nen telle que, pour tout x € | — 1, 1],

—+o0
arctan(x) = Z anx”.

n=0

“+o0 (_1)n
is en déduire 1 leur d E .
puis en deduire la valeur de m+ 1

n=0

On connait bien la dérivée de arctan et, par sommation d’uné série géométrique, on sait également
que cette dérivée est, sur | — 1,1[ la somme de la série entiere Y (—1)"2%" qui est de rayon de
convergence 1 (par exemple en remarquant que, pour z = 1, la suite est bornée mais est le terme
général d’une série divergente).

Ainsi, comme arctan est, sur | — 1, 1], une primitive de la somme de la série entiere Y (—1)"22",
d’apres le théoréme 7, pour tout = €] — 1,1[, on a :

x2n+1 l)n

—+oo
_ (_ 2n+1
o+ 1 _§2n+1x '

+oo
arctan(z) = arctan(0) + Z(—l)”
n=0

Ainsi, la suite (ay,)nen recherchée est de terme général :

=DE o s : ;
——z si n = 2k + 1 est impair,

{0 si n est pair,
Qp =

Comme Y (2;2: converge (d’apres la critere des séries alternées), d’apres le théoreme d’Abel

radial (Théoréme 1), la somme de la série entiere Y (—1)"2%" est continue en 1 et vaut, en 1, la

somme de (2::,2: . De plus, cette valeur en 1 coincide avec arctan(1) puisque la fonction arctan

est continue en 1 également ! Par suite, on a :

+oo
o B
nZ:O 1 arctan(z) = T

33



Partie C

Développements en série entiere

Dans cette partie, U désigne un voisinage de 0 dans R.

1. Développement en série entiere d’une fonction d’une variable réelle

a. Définition et premier exemple

Définition 6. Fonction développable en série entiére

Soit r > 0 et f :] —r,r[— C. On dit que f est développable en série entiére sur | — r, [ s’il
existe une série entiére > a,z™ telle que, pour tout € | —r,r| :

+oo
flx) = Z anz™.
n=0

Soit f: U — C. On dit que f est développable en série entiére s’il existe r > 0 tel que f
est développable en série entiére sur | — r,7].

Remarque 6.

Attention, le développement en série entiere d’une fonction n’est pas, en général, valable sur
tout 'ensemble de définition de la fonction!

Exemple 5.

Les fonctions suivantes sont développables en série entiere :
1

1—-2
— z+— In(1 —2).

— x

— On a pour tout z € | — 1,1],

1 =
_ n
1—x Z z
n=0
donc x est développable en série entiére sur | — 1, 1].
—x
— On remarque tout d’abord, que pour tout z € | — 1, +o0],
1
In(l —z)=— ——dt.
o 1—t
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Considérons alors la série entiére Y 2™ de rayon de convergence égal & 1 et notons f sa
somme.
Alors f admet une primitive sur | — 1, 1[. On considére la primitive F' de f qui s’annule en

Exercice 16.

0. Par le théoréme d’interversion intégrale/somme, on a, pour tout z € | — 1, 1] :
Z T too xn-i—l +oo Pl
= t)dt = t" | dt = thdt | = = =
[rwa= [ (Se)a=3 ([ ea)-5 25 =522
0 n=0 0 n=0 n=1
1
Or,pour t €] —1,1[, f(t) = ¢ donc pour z € | — 1, 1]
a3 “+o0
1 "
In(l —z)=— —dt=—F(x) = — —.
w-a) == [ = Fw =328
Par suite,  — In(1 — x) est développable en série entiére sur | — 1,1].
1 . - o
1. Montrer que 2 — ——— est développable en série entiére sur | — 1, 1].

(1—x)?

1
2. Montrer que x — ——— est développable en série entiére sur | — 1, 1].

(i —)?

1. D’apres l’exercice 13 avec k = 2, on a, pour tout z €] — 1,1] :

l—m an

donc x = 7= )2 est développable en série entiére sur | — 1, 1].
. On remarque que, pour tout z €] — 1,1[, |—iz| = |z| < let:
11 =
_ = - _ o —\"x™
1—x Zl—l—wc Z i) 7;)( i)'

La série entiere > (—i)"2z" est de rayon de convergence 1 donc d’apres la théoréme de
dérivation des sommes de séries entiéres (Théoréme 6), sa somme f est dérivable sur | —1, 1]
et on a, pour tout z €] — 1,1[ :

d —+oo —+oo d +oo —+oo
f(z) = - D (=i = Z(—i)"ax" = (=i)"na" "t =) (—i)"na" .
n=0 n=0 n=0 n=0

Et de plus, on a, pour x €] — 1,1[, comme f(z) = -,
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Il en résulte que, pour tout = €] — 1,1 :

1 +oo +oo
— = i) = Z(—i)"+1nx"_1 = Z(—i)"'”(n + 1)a”.
(/L - .’E) n=0 n=1
. 1 2 as ”
ar suite, © — ——— est développable en série entiere sur | — 1, 1].
P t — ( 2 t développabl t ]—1,1]
i—x

b. Unicité du développement en série entiére

Proposition 10.| Unicité du développement en série entiére

Soit > anz™ et > byz™ des séries enticres de la variable réelle. S’il existe r > 0 tel que pour

tout x € | — 7,7 :
+oo +o0
$ et =S
n=0 n=0

alors, pour tout n € N, a,, = b,,.

c. Séries de Taylor

Définition 7.| Série de Taylor-MacLaurin

Soit f : U — R une fonction C'°°. On appelle série de Taylor-MacLaurin de f, la série
entiere :

m) (o
100

n!
Soit 7 > 0 et f:] —r,r[— C. Si f est développable en série entiere, alors f est C> sur | — r, 7|
et f coincide avec sa série de Taylor-MacLaurin sur | — r, [ i.e., pour tout @ € | — r,r| :

X ¢
n=0

n!

Remarque 7.
Attention! La réciproque du théoréme précédent est fausse! Par exemple, la fonction [ : x —

e 5" (prolongée par continuité en 0 par f(0) = 0) est C° sur R mais n’est pas égale a sa série
de Taylor-MacLaurin au voisinage de 0.
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Exemple 6.

z+1In(l —2x)

La fonction f : z — 5 est prolongeable en une fonction de classe C* sur | — oo, 1].
x

La fonction f est de classe C* sur | — 0o, 1[\{0} comme quotient de fonctions bien définie et de
classe C*° sur | — 00, 1[\{0} dont le dénominateur ne s’annule pas.

Mais en 0 7 Comment s’y prendre ? Le théoréme de la limite de la dérivée peut étre pratique pour
réaliser un prolongement mais encore faut-il pouvoir calculer la dérivée k-ieme de la fonction pour
k € N (mais ce n’est pas hors d’atteinte ici tout de méme!)

Une nouvelle option s’ouvre a nous grace au théoreme 8 : si une fonction est développable en série
entiere sur | — r,r[, alors elle est de classe C*° sur | — r,r][.

Il suffirait donc d’écrire notre fonction f comme somme de série entiére sur un certain intervalle
privé de 0 et de prolonger f en 0 par la valeur en 0 de la somme!

Allons-y! On a vu précédemment que, pour z € | —1,1[, In(1 —z) = — ::1 %n ; d’otl1, pour tout
x€]—1,1[~{0} :

f(z) z+In(l—-z) z-3i9Z fm‘"* f -1 .,
) = — = — = T .
x2 x2 n n+ 2
n=2 n=0
Et de plus, I:E) n_—+120” = —%; donc, en prolongeant f en 0 par f(0) = —%, la fonction f est
développable en série entiére comme somme de la série entiére ) n_—J:Q;E" sur | — 1,1[ et donc,
d’apreés le théoréme 8, f ainsi prolongée est de classe C™ sur | — 1, 1] et donc sur | — oo, 1].

d. Opérations sur les développements en série entiére

Proposition 11.

Soit f, g des fonctions de U dans C. On suppose que f et g sont développables en série entiere
sur | —rg, vyl et | —rg, 74| respectivement ot ry, 7y > 0. Alors, en posant r = min(ry,r,),

e pour tous A, u € R, la fonction A\f 4+ ug est développable en série entiere sur | — r,r[;

e la fonction fg est développable en série entiére sur | — r, r|.

2. Développements en série entiere usuels

a. L’exponentielle, les fonctions trigonométriques et hyperboliques

Théoréme 9.

La fonction x — e” est développable en série entiére sur R et pour tout = € R, e* = exp(z).
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Définition 8. Les fonctions cosinus et sinus complezes

On définit les fonctions de C dans C notées cos et sin, pour z € C, par :

exp(iz) + exp(—iz)

exp(iz) — exp(—iz)
5 .

27

cos(z) = et sin(z) =

A toujours savoir retrouver ! Les développements en série entieres sur R des fonctions trigo-
nométriques et hyperboliques :

= (2n)! = (2n + 1)!
too  on too 2n+1
x x
ch(z) = Zfo (2n)! i) = (2n +1)!

Montrons que sin est développable en série entiere sur R et déterminons ce développement.

Pour tout x € R, on a :
exp(ix) — exp(—ix)
24 '

sont développables en série entiere sur R, et on a, pour tout z € R :

sin(x) =

Or, les fonctions x — e*™®

—+oo . n
+ix (:l:Z.’L')
€ - Z n!
n=0
(1z)" — (—iz)"
n!
il s’agit de la somme des séries entiéres % et > —% qui ont un rayon de convergence
égal a +o0o. Et de plus, on a, pour tout x € R :

La série entiere Y an,a™ avec a, = est de rayon de convergence égal a +oo car

+oo n +oo (Z{E)n +oo (—Zx)" B ‘ ‘ i
Z anx" = Z - + Z T exp(ix) — exp(—iz) = 2isin(x).
n=0 n=0 n=0

Ainsi, sin est développable en série entiére sur R et on a, pour tout z € R :
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2isin(z) = Zanx”
n=0
IX (iz) — (—iz)™
_ et

n!
n=0

TL

= Zz (1-(-1) )m
= ZZZ

n 1mpa1r

2k+1

+oo
_ Z 9 j2k+1 &

k=0 =i(@)?)k=i(-D*

2k+1

- Z% 2k+1)

d’ou
too . p2k+1
i = 1) ——.
sin(e) kzzo( T

Exercice 17.

sm(z)

Montrer que la fonction sinc : z — est prolongeable en une fonction de classe C*° sur R.

Montrons qu’en dehors de 0, la fonction sinc coincide avec la somme d’une série entiere.
La fonction sinus est développable en série entiére sur R et on a, pour tout € R\ {0} :

e on

ST
x o (2n + 1)!

. . . . 7. o\ 2n
Par suite, sinc coincide sur R* avec la somme de la série entiere Z(fl)”m donc, en prolon-
geant sinc en 0 par :

+oo 0271
sinc(0) = S (~1)" o = 1,
|
opard (2n + 1)!

on obtient que la fonction sinc est développable en série entiere sur R et donc que sinc ainsi
prolongée est de classe C'"*° sur R d’apres le théoreme 8.

b. Les fonctions z — (1 + z)“

39



Théoréme 10.

Soit a € R. Alors la fonction 2 — (1 + x)® est développable en série entiére sur | — 1,1[ et on
a, pour tout x € | —1,1[ :

Lty Xala—1).fa—n+1) ,

(I+z)% = ZO o "

A toujours savoir retrouver ! Les développements en série entiéres sur ]—1,1] de:
+o0 too
1 n+k\ , (=1)ntign
—(1_x)k+l_§< ' )x 1n<1+m>_nzzo—n
“+o0 2n+1 +o00 2n+1
B (-1)"x ) _ (2n)! =z
arctan(x) = 7;0 W arcsm(:c) = 7;0 Wﬁ
On se rappelle que pour tout z € | — 1,1[, on a :
1
arcsin’(z) = —— = (1 —2?)7 2.

v1—1z2

Remarque : il se serait bien de savoir démontrer ce résultat... donc : Exercice, montrer
I’égalité précédente!

Indication : on sait que arcsin est la fonction réciproque de sin restreinte a [—7/2,7/2] (la
fonction sin est bien une bijection de [—7/2,7/2] dans [—1, 1] car elle est strictement croissante
sur [—7/2,7/2]). De plus, on connait (ou on sait retrouver) la formule qui relie la dérivée de
la réciproque d’une fonction et la dérivée de la fonction. Et on conclut grace a la formule
de trigonométrie la plus connue du monde qui relie le cosinus et le sinus!

La fonction y — (1 + y)_% est développable en série entiére sur | — 1,1[ et on a, pour tout
yel—-1,1]:

+oo 1/ 1 1

1 =55 = Dodl=g = 1)
n=0
R ()" x1x3x5%x..x(2n—1) ,
= 2 y
= 2nn!

= —1)"(2n)!
_ Z( (=1)"(2n) "

2 x4 x..x2n)2"n!

=

=X (=) (2n)!
3 ( 4")(71,(!)2) o

n=0

Ainsi, pour tout z € | — 1,1, ona y = —z% € ] — 1,0[C] — 1, 1], donc :
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+oo
(1 _ 582)7% — Z ( 1)( (?n) (_l,Z)n
n=0

zz4n)

Il en résulte que z — (1 — 1;2)_% est développable en série entiére sur | — 1, 1[. De plus, le rayon
de convergence R de la série entiére associée a ce développement est R = 1 (on peut obtenir ce
résultat en utilisant la regle de D’Alembert pour les séries tout court puisqu’il s’agit d’une série
entiere lacunaire).

+
= (2n)! o

Ainsi, on peut primitiver sur | — 1,1[ la somme S : z — ", et on a, pour tout
peut p ] [ T; e P
el-1,1[:
= 2nd o = (277’)' * 2nd
4n St = Ty 2 dt
n=0
2n+1
= 4n

Ainsi, en remarquant que deux primitives sont égales & une constante prés et que la primitive
précédente s’annule en 0 tout comme arcsin(0), on obtient, pour tout z € | — 1,1] :

arcsin = E 4n

et donc que arcsin est développable en série entiére sur | — 1,1].

2n+1
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E&P

Exercices et problemes

L’exercice suivant propose une réciproque partielle du théoreme d’Abel radial :

Exercice 18. Théoréme taubérien faible

Si=

)

Soit > anz™ une série entiere de rayon de convergence R > 0 et de somme S. Sia, = o (
n—-+4oo

et S admet une limite finie £ en R™.
Montrer que Y a,R"™ converge et

+oo
Z anR" = /.

n=0

Quitte a changer la variable x en z/R, on peut supposer que la rayon de convergence de Y | a,z"
est R=1.

On note (Sy)neny = Y ayn. On va montrer que la série converge vers ¢ avec la définition i.e. en
montrant que |Sy — £| tend vers 0 quand N tend vers +oo. L’idée est de ”passer” par les termes
d’une suite qui tend vers £, la suite de terme général S (1 — %) Allons-y :

On a, pour N € N :

1
(=) s

n=0 n=0
N n +oo n
1 1
B £
n=0 n=N-+1
S LY g < ol 1\" = 1\"
| 1-5)- Nl < Z\an| -5 -1t Z |an| 1=
n=0 n=N-+1

1 n
— Traitons la somme de 0 & N. D’apres la formule du binéme de Newton, on a <1 — > =

N
Z(—l)k <Z> %, d’ou :

k=0

et ainsi :
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Comme a, = o (%), on a na, —— 0, donc, d’aprés le lemme de Cesaro,
n—+oo ™ n—+o00

1 N
N Lin—oan| 5= 0.

Par suite,

N 1 n
> lan] <1> 1‘—>0.
"0 N N —+o00

— Traitons la seconde somme. De nouveau d’aprés I'hypothése, la suite (nay)nen converge

(vers 0) et donc elle est bornée ; on note alors My = sup  (nlay|). On a:
neN, n>N+1
400 n +oo n +oo n
1 1 1 1 1
> lnl(1-x) = 5 @l ¢ (1-5) <avxy 3 (1-)
n=N+1 n=N+1 <My - n=N+1
< -7

Or, on remarque que :

ng.;(lJif)ngi(l;)nl_(ll)N

et donc :

—+o0 1 n

Ay, 1— > S MN.
n:;-i-l | | < N
Montrons alors que la suite (My)nyen converge vers 0. Soit ¢ > 0. Comme (na,)nen
converge vers 0, il existe nyg € N tel que, pour tout entier n > ng, nla,| < e.
Soit N € N avec N > ng. Alors, pour tout entier n > N + 1, on a n > ng, donc nla,| < e.
Dot My = sup,,en, n>n+1(nlan]) <e.
Il en résulte que (My)nen tend vers 0.
En fait, si on connait les propriétés de la limite supérieure, on a lim My = limsup n|a,|
donc comme (n|ay|) converge, lim My = lim nla,|.

Par suite :
+o0o 1 n
> lanl (1 - > 0
NN A1 N N—+o00
Conclusion :

De plus, par hypothese, S(z) —— ¢, donc, d’apres le caractérisation séquentielle de la limite,
z—1—

1 1
_J < _ 1 — _ -\ _
|Sn €|_‘SN S’( N)‘+’S(1 N> E’mo
et done, Y a, = (Sp)nen converge et on a :
+o00
> an= lim Sy="L.
=0 N—+o00

Remarque : il existe également un théoréme taubérien fort (ou théoréme taubérien de Hardy-
Littlewood - du nom de ceux qui 'ont démontré) dans lequel 'hypotheése petit o devient grand O
- ce qui implique donc le théoréme taubérien faible. La démonstration en est bien plus difficile!
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Probléme 1. Somme des sinus cardinauz des entiers

Questions préliminaires :

in@

P1. (a) Soit 6 ¢ 27Z. Montrer que la série }_, -, < —

n
neN, e =75 -5, 1018, est la somme particlle d’ordre n € N* de la série

converge en utilisant 1’égalité, pour

Zn>1 eme.
(b) En déduire que }, -, w DD COSS") et Znﬁ(—l)”% sont des séries conver-
gentes.
P2. En remarquant que, pour z € R, sin?(z) < |sin(z)|, montrer que Zn21 Lsin(m)| diverge.

s - N sin(n) )
On consideére la série entiere E ———=2" de somme S sur son domaine de convergence.
n>1
1. Montrer que S est de classe C*° sur | — 1, 1] et continue sur [—1, 1].

2. Exprimer S’ puis S & l'aide de fonctions usuelles sur | — 1, 1].

3. En déduire les valeurs des sommes de séries suivantes :

—+oo —+oo

Z sinqgn) ot Z(_l)nsinén).

n=1 n=1

4. En déduire, apres avoir justifié la convergence de la série associée, que :

+o0

sin(2n + 1 s
3 ( )

2n +1 4"

n=0

P1. (a) Remarque : on a déja prouvé ce résultat dans lexercice 7 en utilisant le critére d’Abel

(exercice 6). On refait ici la prewve directe, toujours grdice a une transformée d’Abel
(exercice 6), mais sans le dire !.

Soit @ ¢ 2nZ. Pour n € N*, On pose S, = > ,_; e*® et on a e = S, — S,_1. Ainsi,

pour N € N* :
n=1 n n=1 n n=1 n
_ v, NS i Sn
N &~ Zna+tl
—n N 4= n(n+1)
De plus, comme €’ % 1, on a :
1—emd 2 1
S =] 5 < B = .
|5n| ‘ 1—¢? |~ |1—¢? |sin(0)]
Sn

La suite (S,,) est alors bornée. Ainsi, la suite (=) converge (vers 0) et la série de terme

n
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général —S2— est absolument convergente par comparaison i une série de Riemann
n(n+1)

et donc convergente.
. 7. ei/n’e . .
Par suite, la série ) £— converge car la suite de ses sommes partielles converge.
’ n>1 n

(b) Pour une suite (up)nen & valeurs dans C, on a : (uy,)nen converge si, et seulement si,
(Re(un))nen et (Im(uy,))nen convergent.

in6
Ainsi, en utilisant la convergence prouvée précédemment de an1 =

— pour 0 =1¢27Z, Y, () converge car sin(n) = Im(e™).

— pour 0 =2 ¢ 277, 3 % converge car cos(2n) = Re(e?™).

— pour 9 =1 +m ¢ 27TZ5 ZnZl M converge car bln(’n(l —|—7‘r)) = Im(ein(l"'ﬂ')).

Or, on remarque que sin(n(1+ 7)) = sin(n + nw) = sin(n) cos(nw) = (—1)"sin(n) ;
donc :

Z(il)nsin(n) _ Z sin(n(1 + )) converge.

n n
n>1 n>1

P2. Pour z € R, comme |sin(z)| < 1, on a sin®(z) < |sin(z)|; et donc, pour tout n € N*, on a

sin?(n) < | sin(n)|
n — n '

De plus, pour z € R, on a sin®(z) = (1 — cos(2z)) donc, pour tout n € N* :
| sin(n)| < 1 /1 cos(2n)
n ~2\n n
Or % est le terme général d’une série divergente et d’apres la question P1., os(2n) ogt 1e

2.2 , . . 2 .
terme général d’une série convergente. Par suite, > -, é (% — M) diverge et donc, par

comparaison, »_, % diverge.

1. Notons R le rayon de convergence de la série.

On a % — 0 donc R > 1. De plus, d’apres la question P2., la série 3, -, Siné") ne
converge pas absolument donc R < 1. Par suite R = 1.
Par suite, la fonction S est de classe C* sur | — 1,1[ comme somme de série entiere de

rayon de convergence 1.
D’aprés la question P1. (b) les séries numériques -, -, SmTE") et an(—l)"%
convergent donc, d’apres le théoréme d’Abel radial, S tend vers les sommes de ces séries en

1 et —1 respectivement et donc S est continue sur [—1,1].

2. Comme S est la somme d’une série entiere de rayon de convergence 1, on a, pour tout
xel—-1,1]:

n

: sin(n) d = =
S@N= Z d—x" = Z sin(n)2"" ! = Z sin(n 4+ 1)z"
. n=1 n=0
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De plus, comme sin(z) = Im(e’®) pour tout z € R, on obtient, pour tout x € ] — 1,1[ :

+oo
S'(z) = Im <Z ei("+1)x">
n=0
= Im ( c )
1—-ex
sin(1)
22 —2cos(l)x +1
1 1
S'(z) = .
SlIl(].) z—cos(1) 2
1+( sin(1) )
Par suite, on a, pour tout x € | — 1,1 :
S(x) S(O)Jr/IS'( t)dt = arcta x7C081 arcta 1
%) = = arctan — arctan | — .
0 sin( tan(1)

On rappelle que pour tout x # 0, arctan (x) + arctan ( 1) = 7, donc :

x

S(a) = arctan (2= 4 artan ()
o
S(@) = gl+arctan< — cos( >

SlIl

- arctan( 1)) + 5 — arctan (tan(1))

. La fonction f : x = T — 1 + arctan (w;‘;fﬁ()l)) est continue sur R et donc en +1. Ainsi,

comme S est également continue en +1, on obtient f(£1) = S(£1). Ce qui nous permet de
calculer les sommes recherchées.
Pour ce faire, on utilise les formules usuelles :

cos(p) — cos(q) = —2sin (W) sin (p;q) et
cos(p) + cos(q) = 2 cos (p2q) cos (p;q>

pour trouver, en écrivant 1 = cos(0) :
.o (1 9 (1
1 — cos(1) = 2sin 3 et —1—cos(l) = —2cos 5

1 1
et on a également, par les formules d’additions du sinus, sin(1) = 2sin <2> cos (2>

En se basant sur ces résultats, on trouve :
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—enl:

+
8

3
Il
—

_ T 14 arcten (1=
2 sin(1)

™ _ 1+ arctan ( tan [ 2
= o~ arctan an =
2 2

X sin(n)

I
V]
|
DN | =

n
n=1

— en —1 : en utilisant de nouveau la formule reliant arctan(z) et arctan(1/z) :

= »Sin(n)
B gy = s
n=1
_ T —1 —cos(1)
= 3 1+ arctan (sin(l) )
O ey
= arctan | —— @
T 1
= 3l Tgts
f(_l)nsin(n) 1
ot n B 2
On a donc trouvé :
+oo . +oo
sin(n) w 1 ,sin(n) 1
> =5 -5 e D> (1) =5
n=1 n n=1 n

. La série de terme général (1_(2;1”%

séries convergentes et on a :

est convergente comme combinaison linéaire de

X (1= (=1)") sin(n 1 IX sin(n 13X sin(n s
Zl( 1) é):zzl é)—ng—”" ) _

On note (Sp)nen+ la suite somme partielle de la série précédente et (T, )nen la suite des
sommes partielles de la série > % Comme (1 —(—1)") = 0 pour tout entier pair, on
a, pour tout N € N

n=1
nimpair




. . ;. in(2 1 . o
Ainsi, la série Z% = (Tp)nen est une sous-suite de la série convergente

1—(=1)") si R o .
Do %w et donc converge et ce, vers la méme limite. Par suite, on a :

Jio sin(2n+1) «
— 2+l 47
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