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Dans ce chapitre, E désigne un espace vectoriel réel (pas forcément de dimension finie).

Partie x

Rappels sur les espaces préhilbertiens réels

1. Rappels sur le produit scalaire

a. Produit scalaire

Définition 1. Produit scalaire

Une application ¢ : Ex E — R est appelée produit scalaire sur E si ¢ est une forme bilinéaire
symétrique définie positive de E x E dans R.

Remarque x1.

Usuellement, on note un produit scalaire de deux vecteurs (u|v), (u|v), (u,v) ou méme u - v.
Dans la suite, on utilisera principalement la notation (-|-).

Exercice x1.

Donner des exemples de produits scalaires sur les espaces : R, £2(R), C(I) ot I est un intervalle
fermé borné de R et M, (R).

— pour & = (X1,...,2Zn) et ¥y = (y1,...,Yn) des vecteurs de R", le produit scalaire canonique
est donné par :
n
(zly) = Z ZiYi
i=1
— pour u = (U )nen €t v = (v,)nen des vecteurs de £2(R), le produit scalaire canonique est
donné par :
oo
(ulv) = Z U;V;
i=0

— pour f et g des vecteurs de C([), le produit scalaire canonique est donné par :

(flg) = / F(t)g(t)dt



— pour A et B des vecteurs de M, (R), le produit scalaire canonique est donné par :

(A|B) =Tr(AB) = > ai;bi,

1<ij<n

Définition %2.| Espace préhilbertien
Soit (+]-) un produit scalaire sur E. Le couple (F, (+])), ou simplement F s’il n’y a pas d’ambi-
guité, est appelé espace préhilbertien.
Si de plus E est de dimension finie, on dit que (E, (-|-)) est un espace euclidien.

Exemple 1. Important

T Y1

L’espace vectoriel M, 1 (R) muni du produit scalaire (-,-) o, pour tous X = | © | , Y =] |,

Tn Yn
(X,Y) =) wiy = XY,
i=1

est un espace euclidien. Le produit scalaire précédent est souvent désigné comme le produit
scalaire canonique de M, ;.

b. Norme associée a un produit scalaire

Définition *3.| Norme associé au produit scalaire

Soit E un espace préhilbertien réel. On note || - || et on appelle norme associée au produit
scalaire (-|-), application :

-1 £ - Ry
z o= 2] = V().
De plus, on note d : E x E — Ry et on appelle distance associée & || - ||, 'application définie,

pour x,y € E, par :
d(z,y) = ||z —yll.

,( Théoréme *1.) Inégalité de Cauchy-Schwarz

Soit F un espace préhilbertien réel. On a l'inégalité suivante, pour tous x,y € E :

|(ly)] < ]yl

Et de plus, on a |(z|y)| = ||=||||ly|| si, et seulement si, x et y sont colinéaires.




Soit z,y € F et t € R. On consideére la fonction f : R — R définie, pour ¢ € R, par :
F&) =tz +yl* = (tz + yltz + y).
Alors on a, pour tout ¢t € R,
F(t) = (@lz) +2(zly) + (yly) = £]l2|* + 2(z]y) + [ly]|*.

Pour x # 0, f est une fonction polynomiale de degré 2 et on a f(¢) > 0 pour tout ¢t € R, donc
son discriminant A est négatif i.e.

A = 4(aly)? — 4ll=|*lyl* < 0.

Par suite,
(zly)® < (I=llllyl)?

Et cette inégalité est trivialement vraie pour z = Og - et c’est méme une égalité dans ce cas. La
fonction racine étant croissante sur R, il en résulte que pour tous xz,y € F :

|ly)] < llllyll-

De plus, si z # Og et y colinéaire a x, alors il existe A € R tel que y = Az et
|(ly)l = ANzl = £lz]l- Mzl = llz]l{ly]-

Réciproquement, pour z # O, si I'égalité est vérifiée, alors A = 4(z|y)? — 4/z|?||ly[|*> = 0 donc f
posseéde une racine A i.e.
Az +ylAz +y) = f(A) =0.

Donc par définie positivité du produit scalaire, Ax +y = Og ; d’out « et y sont colinéaires. O
Proposition x1.

Soit E un espace préhilbertien réel. La norme || - || associée au produit scalaire est une norme
sur F.

o || - || est positive par positivité du produit scalaire).
e Soit x € E. Si ||z|| = 0, alors (z|z) = 0 donc = Op car le produit scalaire est défini
positif.

Soit z € E et A € R. Par bilinéarité de (-|-), on a :
Ih]|* = (Aa|Az) = 3 (z]z) = X?|l]|?,

d’ol ’homogénéité.
Soit x,y € E. On a :

Iz +yl? = (z +yle +y) = [l=]* + 2(zly) + [ly]l*,



donc, d’apres 'inégalité de Cauchy-Schwarz :

2
lz+yl1? < llel® + 2llz Iyl + lyll* = el + lyl)”-

d’otu I'inégalité triangulaire.

Exercice 2.
Soit z,y € E. Démontrer les égalités suivantes :
L d(z,y) = V/[l=[ + [ly[ - 2([y).
2. lz+yllP+ lz —yl> =2 (||=]|*> + |yl|?) (Identité du parallélogramme).
3. (zly) = § (llz +yll> = lz — yl?) (Identité de polarisation,).
Tout cet exerice repose sur les égalités :
lz £yl = (z £ ylz £ y) = l|lz]|* £ 2(ly) + ly]1*.
1. Ona: ) )
d(z,y)* = |z -yl
= l* = 2(zly) + llylI?
d’ou le résultat.
2. Ona:
lz+yl*+ lle —yll* = llz]* +2(=ly) + Iyl + (=1 — 2(=ly) + Iy]?)
= 2]l|? + 2/ylI?
= 2 (=1 + lyl1?)

3. On a:

lz+yll* = llz =yl = llel® + 2(ly) + ylI* = (l=]I* = 2(=ly) + llyl*)
= Azly)

d’ou le résultat.

2. Rappels et compléments sur ’orthogonalité

Définition x4.) Orthogonalité

Soit F un espace préhilbertien réel.

— Soit z,y € E. On dit que z et y sont orthogonaux et on note x L y si (z|y) = 0.



— Soit A C E. On note A* et on appelle orthogonal de A, I'ensemble :
At ={z € E|Vac A, (az) = 0}.

— Soit F, G des sous-espaces vectoriels de E. On dit que F' et G sont orthogonaux et on
note F' | G si, pour tout = € F et tout y € G, (z]y) = 0. Autrement dit si F C G+ (ou
de maniére équivalente, G C F4).

Exercice 3.

Soit E un espace préhilbertien réel et A C E.
— Montrer que A+ est un sous-espace vectoriel de E de deux facons.

— Montrer que At est un fermé de E pour la norme || - |.

1. Pour la premiére fagon, il s’agit d’utiliser la définition de sous-espace vectoriel.

Pour la deuxiéme, on remarque que AL = Naca Ker(pg) ot, pour a € A, ¢, : x + (alz),
donc A est un sous-espace vectoriel de E comme intersection de sous-espaces vectoriels
de E.

2. On reprend 'égalité A+ = Naca Ker(p,) et on remarque que :
— pour a € A et x € X, d’apres I'inégalité de Cauchy-Schwarz,

|[fa(2)] = [(alz)] < [lalflz]

Donc f, est ||a||-lipschitzienne et donc continue pour || - ||.

— Ker(pa) = ¢ 1({0}) donc Ker(p,) est un fermé pour || - || comme image réciproque d'un
fermé par une application continue.

Par suite, A+ est fermé pour || - || comme intersection de fermé.

Exemple *2.

— Dans un espace préhilbertien réel E, on a : B+ = {0g} et {0g}*t = E.

— Dans R? muni de son produit scalaire canonique, {(1, —1)}*+ = {(z,7) | z € R}.
— Dans R3 muni de son produit scalaire canonique,

Vect((1,1,1),(1,2,3)) L Vect(1, —2,1).

Définition *5.) Famille orthogonale/orthonormale

Soit E un espace préhilbertien réel et F = (z;);c; une famille de vecteurs de E. On dit que F
est :



— orthogonale si, pour tous i,j € I avec ¢ # j,
(wila;) = 0.
— orthonormale si, pour tous 7,5 € I,

0sii#j
lsii=j

(zilz;) = 6i5 = {

On dit qu’une famille de E est une base orthonormale si c¢’est une base et une famille ortho-
normale.

Exercice x4.

Soit E un espace préhilbertien réel et n € N*. Montrer les proposition suivantes :
1. Toute famille orthogonale de vecteurs non nuls de E est libre.

2. On suppose que E admet une base orthonormale B = (e;);c;. Montrer que, pour tous
z,y € E de décompositions dans B, x = Y, xse; et y = Y., yie; (sommes finies), on

a .
(z|y) = inyi et x = Z($|€i)€i.
i€l il

3. (Théoréme de Pythagore) Soit (x1,...z,) une famille finie orthogonale de vecteurs de E.

Alors )
Yomi| =l

i=1 i=1

Proposition 1.

Soit (E,(:|-)) un espace euclidien de dimension n, B une base orthonormale de E. Pour tous
x,y € E,on a:

(z|ly) = XY (=(X,Y)) ot X = Matg(x),Y = Matg(y).

Soit z,y € E. On note ey, ..., e, les vecteurs de B. Alors, sionnote x = Y " | wie; ety = > 0| yie;

les décompositions de z,y dans B, par bilinéarité du produit scalaire (-|-) et par orthonormalité
Z1 h

de Bona, X=| : |, Y= : [et:



Proposition *2.| Matrice d’un endormrphisme dans une base orthonormale

Soit E un espace euclidien, v € L(E) et B = (eq, ..., e,) une base orthonormale de E. Si on
note A = Matp(u), alors :
A= ((u(ej)‘ei))lgi,jgn )

et, pour tous x,y € F,

(u(z)|y) = X'AY = ¥ AX ot X = Matg(z),Y = Matp(y).

On note A = Matp(u) = (aij);<; j<p-

— Soit j € [1,n]. D’une part, comme B est orthonormale, on a u(e;) = > i, (u(e;)|e;)e; et
d’autre part, par définition de A, u(e;) = >_1", a;je; ; ainsi, par unicité de la décomposition
d’un vecteur dans une base, pour tout i € [1,n], a;; = (u(e;)|e;).

— Soit z,y € E. On note X = Matg(z),Y = Matg(y). Alors Matg(u(z)) = AX et donc :

(u(z)|y) = '"AXY = X'AY.

Proposition *3.| Orthonormalisation de Gram-Schmidt

Soit E un espace préhilbertien réel et (x1,...,x,) une famille libre de E. Alors il existe une
famille (eq, ..., e,) orthonormale de E telle que, pour tout k € [1,n] :

Vect(eq, ..., ex) = Vect(zq, ..., xg).

Plus précisément, on peut construire un telle famille (eq, ..., €, ) par le procédé de Gram-Schmidt :

pour k=1,...,n

k-1
er = Sk ol e = T) — Z(xk|ei)ei.
el P

On raisonne par récurrence finie sur & € [1, n] pour montrer que Vect(ey, ..., ex) = Vect(z1, ..., %)
ou les e; sont donnés par le procédé de Gram-Schmidt :
e Initialisation. Pour k = 1, la propriété est vraie car

€1 €

e = = o
lexll  llzall
o Hérédité. Soit k € [1,n — 1]. On suppose la propriété vraie pour k. On a, par hypothése

de récurrence :
k

Ek+1 = Tky1 + Z(xk+l|ei)ei € Vect(x1, .oy Tpt1)-
=1

€Vect(z1,...,T5)



Ek+

Par suite, exy1 = € Vect(z1, ..., Tx41). De plus, on a, pour [ € [1, k],

||€k+1|\
k 1-1
(hriler) = (@rpr — D (@rpileneila — Y (ziles)e:)
i=1 i=1
k -1 -1 k
= (@ral) =Y (@rrales)(@iler) = D (miles) (@hiales) + Y Y (wiles)(@riale;) (eiles)
i=1 i=1 i=1 j=1 —
=0 si j#i
k -1 -1
= (@rprlz) = Y _(@rrrles)(@ile:) = D (@iles)(@rrles) + > (wile:)(@niales)
i=1 i=1 =1
k -1 -1
= (@rprlz) = ) _(@rrrled)(@le:) — Y (@iles)(@rrles) + D (wile:)(@niales)
1=1 =1 =1

O

Corollaire x1.

Soit F un espace préhilbertien réel et F' un sous-espace vectoriel de dimension finie. Alors F
admet une base orthonormale.

Comme F est de dimension finie (disons p), il existe une base B = (z1,...,2,) de F. Alors on
orthonormalise cette base grice au procédé de Gram-Schmidt pour obtenir une base B’ ortho-
normale de F'. O

Exercice 5.

On munit R3 de son produit scalaire canonique. Déterminer, grace au procédé de Gram-Schmidt,
la base orthonormale de R3 obtenue & partir de la base formée des vecteurs :

(1,1,1), (1,2,3), (1,-2,1).

Remarque *2.

Pour A, B C F et F un sous-espace vectoriel de F, on a les propriétés suivantes :
— Si A C B alors B+ C A,
— Ac(Aaht

Définition-Proposition *6.| Somme directe orthogonale

Soit n € N*, E un espace préhilbertien réel et (F;);cq1,,) une famille de sous-espaces vectoriels
de E.



Si Fi,..., I}, sont deux a deux orthogonaux, alors ils sont en somme directe.

1 L
Dans ce cas, on dit que F1, ..., F}, sont en somme directe orthogonale et on note F; ®...® F),
la somme F; @ ... ® F,.

On suppose que, pour tous ¢,j € [1,n], F; L F}.
Soit y = x1 + ... + x, € Y., F; o, pour tout ¢ € [1,n], x; € F;. On suppose y = 0. Alors,
pour tout j € [1,n], on a, par linéarité par rapport a la premiére variable du produit scalaire :

) =) = <sz | xj) = Z (zilz;) = (zj|z;),

et donc z; = O par définie positivité du produit scalaire.
Il en résulte que Fi, ..., F,, sont en somme directe. O

Proposition x4.

Soit E un espace préhilbertien réel et F' un sous-espace vectoriel de E. Les sous-espaces vectoriels
F et F'* sont en somme directe orthogonale.

Soit z € FNF+. Alors (_z |_z ) = 0 donc par définie positivité de (-|-), * = 0p.

EF eFt
De plus, par définition, F 1 F*.
Par suite, F et F- sont en somme directe orthogonale. O

Définition *7.) Supplémentaire orthogonal

Soit E un espace préhilbertien réel et F' un sous-espace vectoriel de E.

1
On dit que F admet un supplémentaire orthogonale dans E si F & F+ = E et dans ce
cas, on dit que F'* est le supplémentaire orthogonal de F dans E.
Proposition x5.

Soit E un espace préhilbertien réel et F, G des sous-espaces vectoriels de E.

— On suppose que F et G sont supplémentaires. Alors F' L G si, et seulement si, G = F-.

L
— Si E=F@F*, alors (FH)t =F.

10



— On suppose F' L G. Alors G C F*. Montrons l'inclusion réciproque.
Soitt e Fr=E=F®G. Alorsz= zp + z¢ etona:
~—
€F  €G
(x —zglz —zg) = (z—2ag|lzr)
= (zlzr) - (z|zc)
~——
=0 =0
= 0.
Donc, par définie positivité de (+|-), x — g = 0p, dou = z¢ € G.
Par suite, G = F1.

La réciproque est immédiate car F+ L F.
— On applique le point précédent & "F” = F* et ’G” = F. Comme F* 1 F, on obtient
alors F' = (F1)*.
]

Exemple %3.

On considere les espaces vectoriels suivants munis de leurs produits scalaires canoniques respectifs.

— Dans R?, on consideére le plan P d’équation P : z+y = 0. Alors la droite P+ = Vect(1, 1, 0)
est le supplémentaire orthogonal de P.

— Dans C([0,1],R), on considere le sous-espace vectoriel F' des fonctions constantes. Alors
le sous-espace des fonctions d’intégrale nulle est le supplémentaire orthogonal de F'.

— Dans ¢2(N), on consideére le sous-espace vectoriel F' des suites stationnaires en 0. Alors
Fi = {02y } et donc F' n’admet pas de supplémentaire orthogonal.

Comme ’équation de P est « +y = 0, le vecteur (1,1,0) est normal (i.e. orthogonal) a P.
Ainsi, Vect(1,1,0) L P et ils sont donc en somme directe d’apres la définition-proposition
6. De plus, on a dim(P) + dim(Vect(1,1,0)) = 3 = dim(R?) donc ils sont supplémentaires.
Il en résulte, d’apres la proposition 5, que Vect(1, 1,0) est le supplémentaire orthogonal de

P.

En analysant le probléme, on remarque que si f € F*, alors fol f@)dt=(f|1) =0.
On conjecture donc que :

FL{fGEI/lf(t)dtO}{l}l-
0

Montrons le par double inclusion :
C. Soit f € Ft. Alors, en particulier, on a 1 € F donc :

(/1) =0
cFL (3
1
Dot f e {1}: = {f € B| / F(#)dt = 0}
0
D. Soit f € {1}*. Pour tout g € F, g est constante sur [0, 1] donc il existe ¢ € R tel que

g=cl,dou:
(flg) = (fle1) = c(f11) =0

11



Par suite, pour tout g € F, (f|g) = 0 et donc f € F*.
Notre conjecture est donc vérifiée.

— Pour k € N, on consideére la suite u(k) = (w(k)n)nen, définie, pour n € N, par :

1 sin=k

u(k)n = Ok = {O sin#k

Alors, pour tout k € N, on a u(k) € F car u(k) est stationnaire en 0 & partir du rang k + 1.

Soit v = (vn)neny € F*. On a alors, pour tout k € N :

+oo
0= (u(k)|v) =D Sknvn = v,
n=0

donc v est la suite nulle.
Il en résulte que F+ = {02y }-

Proposition *6.

Soit E un espace préhilbertien réel et F' un sous-espace vectoriel de E de dimension finie.

1
Alors E=F @ Ftet (FH)L =F.

D’aprés la proposition 4, F' et F- sont en somme directe orthogonale. Montrons alors que E =
F+Ft.

Soit = € E. Le sous-espace vectoriel F' de E est de dimension finie alors on peut considérer une
base orthonormale B = (e1, ...,e,) de F. On pose zr = Y ©_ (z|e;)e; € F. Alors on a, pour tout

j€lL,nl:

(z —zrle;) = (zlej) — (zrlej)

= (zlej) - Z($|ei)(6i|ej)
= (zlej) — (zle;) = 0.

Par suite, © — xp est orthogonal avec chacun des éléments d’une base de F', donc x — zp € FL.
Ainsi, r = xp + (x —zp) € F + F+.

1
Il en résulte que E = F @ FL.

1
De plus, d’apres ce qui précede, on a E = F @ FL et on applique alors la proposition 5. O

12



Corollaire x2.

Soit E un espace euclidien et F' un sous-espace vectoriel de E. Alors

dim(F) + dim(F+) = dim(E).

Comme E est de dimension finie, alors F' et F- sont de dimension finie et donc d’apres la

1L
proposition précédente, on a E = F @ F1, d’ou le résultat. O

Exercice x6.

Soit E = C([0, 1], R) muni de son produit scalaire canonique. On pose
F={feE[vte|01], fA-t)=[f{t)} et G={fecE]f(0)=0}
1. Démontrer que F' et G sont des sous-espaces vectoriels de E.

2. Déterminer F* et G+.

3. Que peut-on dire alors des supplémentaires orthogonaux des sous-espaces de dimension
inifnie ?

1. — Ona F = Ker(u) ot v : E — E est application linéaire v : f — u(f) :t — f(t)— f(1—
t), donc F est une sous-espace vectoriel de E comme noyau d’une application linéaire
d’espace de départ E.

— On a G = Ker(p) ou ¢ : E — R est la forme linéaire ¢ : f — f(0), donc G est une
sous-espace vectoriel de E comme noyau d’une application linéaire d’espace de départ
E.

2. — Analysons le probléeme : si g € E, alors, pour tout f € F, on a, en effectuant le change-
ment de variable x =1 —1¢:

(flo) = | roae)a
— /Ef(t)g(t)dzH—[ f(t)g(t)dt
0 2
% 0
— [ g~ [ g0 -gga-na
0 3 Ty
=f(t)
(o) = [ 1O +90 - )

Si g € F+, cette quantité doit étre nulle et comme la fonction f peut prendre toutes les

13



valeurs possibles sur [0, %], on conjecture que :
Ft={geE|Vte01], g(1-1t)=—g(t)}

Montrons la par double inclusion :

C. Soit g € F1. On consideére la fonction f : ¢ — g(t) + g(1 — t). Celle-ci est continue
sur E car g l'est et on a, pour tout t € [0,1], f(1—¢t) =g(1—t)+g(t) = f(t); dou
ferF.

Alors, d’apres la calcul effectué dans ’analyse précédente, on a :

o:uwrzﬂfﬂw@afw+gwnuzlfﬂw%u

La fonction f est ainsi continue, positive et d’intégrale nulle sur [0, %] et donc, f est
nulle sur [0, 1].
De plus, pour tout ¢ € [%, 1],1—-t € [0, %] donc, comme f € F,ona f(t) = f(1—t) =
0.
11 en résulte que f = O i.e. pour tout t € [0,1], f(¢t) =0 et donc g(1 —t) = —g(t).
Dou Ft Cc{ge E|Vte|0,1], g(1—1t)=—g(t)}.

D. Soit g € E telle que, pour tout ¢ € [0,1], g(1 —t) = —g(¢). Alors, pour tout f € F,
on a, en utilisant le calcul effectué dans I’analyse initiale :

(flg) = /05 @) (g(t) + g(1 —t)) dt = 0.

Par suite, g € F*+. Ainsi, {g€ E |Vt € [0,1], g(1 —t) = —g(t)} C F*+.
Notre conjecture est donc vérifiée.

— En analysant le probléme, on se rend compte que si f € G, f doit étre nulle sur ]0, 1]
et donc, par continuité de f en 0, que f = 0p.
On conjecture ainsi que G+ = {0g}. Montrons l'inclusion G C {0g}; la seconde
inclusion étant immédiate car G est un sous-espace vectoriel de E.

Soit f € G*. On consideére g : ¢ +— tf(t). Alors g est continue sur [0, 1] comme produit
de fonctions continues sur [0, 1] et g(0) = 0f(0) = 0 donc g € G.
Par suite, on a, d’une part, (f|g) = 0 et d’autre part :

1 1
(9= [ fgyde= [ tr0P e
0 0

Par suite, la fonction ¢ — ¢ f(¢)? est continue, positive et d’intégrale nulle sur [0, 1], donc
elle est égale a la fonction nulle sur [0, 1].
Ainsi, pour tout t € ]0,1], f(t) = 0 car tf(t)? = 0.
De plus, f est continue en 0 et lim,_,qg+ f(t) = lim,_,q+ 0 = 0 donc f(0) = 0.
Par suite, f est égal a Op.
Il en résulte que G+ = {0g}.

3. Les espaces F et G sont des sous-espaces de dimension infinie de E (la famille (¢ —
(t(1 — t)™)nen est une famille libre de F et (¢ — t")pen+ est une famille libre de G)
et, d’apres ce qui précede, F' posseéde un supplémentaire orthogonal (et on remarque que ce
supplémentaire est de dimension infinie lui aussi) alors que G n’en admet pas.

Conclusion : pour les sous-espaces de dimension infinie, on ne peut rien dire quant a ’exis-
tence d’un supplémentaire orthogonal en général !
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Partie *xx

Projection orthogonale

Dans cette partie, F désigne un espace préhilbertien réel de produit scalaire noté (+|-), de norme associée
notée || - || et de distance associée notée d.

1. Projection orthogonale sur un sous-espace vectoriel de dimension finie

Définition *x1., Projection orthogonale
Soit F' un sous-espace vectoriel de dimension finie de E. On appelle projection orthogonale

sur F et on note pp, la projection sur F parallelement & son supplémentaire orthogonal F.
L’'image pr(z) d'un vecteur € E par la projection orthogonale sur F' est appelée projeté

orthogonal de x sur F.

Remarque *x1.

Pour F un sous-espace vectoriel de E de dimension finie, on a Im(pr) = F et Ker(pr) = F*.

Proposition *x1.

Soit F' un sous-espace vectoriel de E de dimension finie p, B = (e, ..., ep) une base orthonormale
de F et z € E. Alors la projection orthogonale de x sur F' vérifie :

P
pr(z) = Z(:c\ei)ei.
i=1
Comme dans la démonstration de 6, on décompose © = y + z avec y = le(a:|ei)ei € F et
z € F-. Par suite,
P
pr(z) = pr(y) +pr(z) = Y _(zlees.
~—— T P
=y =0g

Remarque *x2.

La famille orthonormale (e, ..., e, ) obtenue & partir d’une famille (x4, ...x,) libre de E grace au
procédé de Gram-Schmidt peut alors s’exprimer de la fagon suivante : pour k =1,...,n — 1, on
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note
Fy, = Vect(xy, ...x) (= Vect(eq, ...e)) .

et on a : 1
Chtl = — k41 OU Ek1 = Tht1 — DF, (Thy1)s
lek+1ll

de plus,

ler+1l = Vllzrral? — Ipp, (zrs1) I

Proposition *x2.

Soit F' un sous-espace vectoriel de dimension finie de F et (21, ..., ) une famille génératrice de

F.Pour z,y € F,ona:

y=rrl) < {(x—ylﬂfi) = 0Vi € [Lk].

Exercice xx1.

Soit n € N*. On munit R[X] du produit scalaire
1
(PlQ) = [ PO
0

Déterminer la projection orthogonale de X™ sur F' = R;[X].

On a deg(pr(X™)) =1 donc pr(X™) = aX +b. De plus, on a :

1 a+2b o= 6n
(X" —pp(X™)[1) =0 ntl 2 (1) (n+2)
= =
{(X”—pF(X”)|X)—0 1 :2a+3b _ 2—<2n
n+2 6 (n+1)(n+2)

2. Distance a un sous-espace de dimension finie
On rappelle ici la définition de distance a une partie de E' :
Définition *x2.| Distance a une partie

Soit z € E et A C E. On appelle distance de x & A et on note d(z, A) la quantité
d(xz,A) = algfl d(z,a).

16



Proposition *x*3.

a F est atteinte en un unique point de F' : le projeté orthogonale pr(z) de z sur F. Autrement
dit :
— d(z,F) = ||z — pr(z)| et;

— pour tout y € F, d(z, F) = ||z — y|| implique y = pr(z).

Soit F' un sous-espace vectoriel de dimension finie de E et z € E. Alors la distance d(z, F') de =

Soit y € F. Alorson ax —y =z — pp(z) +pr(z) —y

eFr+ EF
D’apres le théoreme de Pythagore, on a

lz = ylI” = llz — pr(@)|I* + llpr(@) = ylI* = llo — pr(@)]*.
Ceci étant vrai pour tout y € F, on a : d(x, F) > |lz — pr(z)|. Or, pr(x) € F donc d(z, F') <
|z — pr(2z)||. Il en résulte que d(z, F) = ||l — pr(z)].
De plus, pour y € F, si d(z, F') = ||z — y||, alors, d’apres le théoréme de Pythagore,

ly = pr@)II* = |z = yl* = & — pr()|I* = |2 - yl|* — d(=z, F)* = 0.

Exercice *x2.

Déterminer la quantité A = inf, y)cr2 fol(t2 — at — b)?dt.

On remarque, en considérant R[X] muni du produit scalaire (P|Q) = fol P(t)Q(t)dt et en notant
Rl[XL que
1
A= inf (t? — at — b)?dt = d(X?, F)?

(a,b)eR? Jo

d(X?,pr(X?))?
En reprenant le résultat de I'exercice **1, on obtient pp(X?) = X — %, d’ou

A

1
1 1
Bt = —
/0( +6) 180

Corollaire *x1.

Soit F' un sous-espace de dimension finie k, B = (eq,
x € E. Alorson a :

,er) une base orthonormale de F' et
k

d(z, F)* = |l]* = Y (eile)®.

=1
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Démonstration.
On a pp(x) = Zle(ei|x)ei, et x — pr(x) L pr(x), donc, d’apres le théoreme de Pythagore :

k
d(z, F)* = ||lz = pp(@)* = ll2” = lpr @)II* = ll]|* = Y_(eslz)*.

i=1

,(Théoréme *x1 )

Soit (e, ..., ex) une famille orthonormale de E. Alors on a :

k

> (eilz)? < .

=1

Démonstration.
On applique le corollaire précédent & F' = Vect(ey, ..., ex). Alors on a :

k

k
lz)* = d(z, F)* + ) (eile)® 2 ) (eil)®.
i=1

=1
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Partie A

Adjoint d'un endomorphisme

Dans cette partie, n désigne un entier naturel et E désigne un espace euclidien de dimension n de produit
scalaire noté (+|-), de norme associée notée || - || et de distance associée notée d.

1. Représentation des formes linéaires

Théoréme 1.

Théoréme de représentation de Riesz

Soit ¢ une forme linéaire sur l'espace euclidien E. Alors il existe un unique vecteur a € E tel
que, pour tout x € F,

p(x) = (alz).

On considére une base orthonormale B = (e, ..., e,) de E.
e Existence : On pose a = Y. | ¢(e;)e;. Alors, pour tout z = > | x;¢; € E, on a, par

linéarité de f :
(alx) = lego e;) = szez =

e Unicité : Soit a,b € E tels que, pour tous z € E, (alz) = ¢(x) = (bJz). Alors, pour tous
zeFE:
(@ = blz) = (a|z) = (blz) = ¢(x) — p(x) = 0.

Ainsi, a — b appartient a 'orthogonal de E d’out a — b = 0g i.e. a = b.

Corollaire 1.

Soit H un hyperplan de E. Il existe un vecteur non nul n € E tel que H = {n}+.

Soit H un hyperplan de E. Alors il existe une forme linéaire non nulle ¢ telle que H = Ker(yp).
D’apres le théoréeme de représentation de Riesz, il existe (un unique) n € E tel que ¢ :  — (n|x);
de plus, comme ¢ # 0, n # O et on a :

H = Ker(¢) = {z € B | (nfe) = p(z) = 0} = {n}".
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Remarque 1.

Un tel vecteur n est appelé vecteur normal & H ; il n’y a pas unicité d’un vecteur normal : en
effet, si m est normal & H, pour A € R*, An est normal a H.

Exercice 1.
Soit ¢ une forme linéaire sur M, (R). Montrer qu’il existe une unique matrice A € M, (R) telle

que pour tout M € M, (R),
(M) =Tr(AM).

On munit M, (R) du produit scalaire (M|N) = Tr(M N). Comme ¢ est une forme linéaire,
d’apres le théoréme de représentation de Riesz, il existe un unique B € M, (R) tel que pour tout
M € M,(R), (M) = (B|M) = Tr('BM). Ainsi, en posant A =B, on obtient :

p(M) = Tr(AM),

et de plus, A est unique par unicité de B. O

2. Adjoint d’un endomorphisme

Soit u € L(FE). 1l existe un unique v € L(E) tel que, pour tous x,y € E :

(u(2)ly) = (z[v(y))-

o Existence : Soit y € E. On note ¢ : E — R Dl'application définie, pour = € E par
wy(z) = (u(z)|y). Par linéarité de u et du produit scalaire par rapport & sa premiere
variable, ¢ est une forme linéaire sur ’espace euclidien E. Ainsi, d’apres le théoreme de
représentation de Riesz, il existe un unique vecteur a, € E tel que ¢, (z) = (ay|z) pour
tous x € E.

Par suite, I’application v : y — a, est bien définie de £ dans lui-méme et on a alors, pour
tous z,y € E :

(u(@)]y) = ¢y(z) = (ay|z) = (z]ay) = (z|v(y))-
De plus, pour y,z € E et A\, u € R, on a, pour tout € E, par linéarité du produit scalaire
par rapport a la seconde variable :

(zlv(Ay +pz)) = (u(@)|Ay + pz
A(u(z)|y) + p
AMz|v(y)) + p
(zlv(\y +pz)) = (z[ (y) + po

TN —

u(z)|2)
z|v(2))
2));

—~

—~
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donc (zlv(Ay + pz) — (Av(y) + po(z))) = 0, pour tout = € E, d’ou :

v(Ay + pz) = Ao(y) + po(z).

Ainsi, v est un endomorphisme de E.
Ce qui prouve lexistence.

e Unicité : Soit v,w € L(FE) tels que, pour tous z,y € E :

(z[o(y)) = (u(@)ly) = (z[w(y))-

Soit y € E. alors pour tout z € F :

(z[o(y) — w(y)) = (z]v(y)) — (z|w(y)) = (u(2)]y) - (u(z)]y) = 0.

Par suite, v(y) = w(y).
Donc v = w. Ce qui prouve 'unicité.
Le lemme précédent légitime la définition suivante :

Définition 1.

Soit u € L(FE). On appelle endomorphisme adjoint - ou simplement adjoint - de u 'unique
endomorphisme de F noté u* tel que, pour tous z,y € F :

(u(2)ly) = (z|u*(y))

Exemple 1.

— Si u est une homothéthie de F, alors u* = u.

En effet, pour u = AIdg avec A € R, on a, pour tous z,y € F :

(u(2)]y) = (Aely) = Azly) = (z|hy) = (z[u(y)).

Par suite, u* = u.

— Pour E = R? muni de son produit scalaire canonique et f € L(E) tel que f : (z,y) —
(x+2y,2), na f*=g:(z,y) = (z +y,22)

En effet, pour tous (z,y), (a,b) € E :

(f(z,9)|(a,0)) = (z + 2y)a + 2b = z(a + ) + y.2a = ((2,y)|9(a, b))

Par suite, f* = g.

3. Propriétés de ’adjoint
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Proposition 2.| Matrice de ’adjoint dans une base orthonormale

Soit u,v € L(E) et B une base orthonormale de E. On note A = Matp(u) et B = Matg(v).
L’endomorphisme v est Padjoint de w i.e. v = u* si, et seulement si, B = A.
En particulier, Mats(u*) = 'A.

Soit u,v € L(E), u* son adjoint, B une base orthonormale de E. On note A = (a;;)1<i j<n =
Matg(u) et B= (bij)lgi,jgn = MatB(’U).
(=) On suppose v = u*. Comme B est orthonormale, on a, pour tous 4, j € [1,n] :

bij = (u*(ej)le:) = (ejlules)) = (ulei)le;) = aji-

car u* est I’adjoint de u.
Par suite, on a B = ‘A.
(<) On suppose B = 'A. Soit 2,y € E. On note X = Matg(z) et Y = Matg(y). On a :

(u(@)ly) = (AX)Y =X ‘A Y = X(BY) = (z|o(y))
=B

Par suite, par unicité de ’adjoint de u, on a v = u*.

Proposition 3.

L’application u — u* est un automorphisme involutif de L(E).

Notons Ad : u — u*.

— 1ére facon : avec la définition.
L’application Ad va bien de £(FE) dans lui-méme. Soit u,v € L(E) et A\, u € R. On a, pour

tous z,y € F :
(Au+po)(@)ly) = Mu(@)]y) + plo(@)]y)
= Azlu*(y)) + p(zlv*(y))
(Au+po)(@)ly) = (z[(Mu* + pv*)(y)).

Donc, par unicité de I'adjoint :
Ad Du + pv) = Au+ po)* = du* + po* = AAd(u) + pAd(v).

Par suite Ad est linéaire.

Montrons que Ad est involutive. Soit u € L(F). On note v = u*. Pour tous z,y € E :

(v(@)ly) = (u*(@)ly) = (z|u(y)),

donc v* = wu par unicité de adjoint. Ainsi, Ad*(u) = Ad(v) = v* = u i.e. Ad est une
involution.

Ainsi, Ad est un élément inversible de 'anneau (£ ((L(E)), +, o) car, étant une involution,
il est sa propre inverse; d’ott Ad est bijective et donc un automorphisme de L(E).

22



Il en résulte que Ad est un automorphisme involutif de L(FE).

— 2nde fagon : avec la proposition précédente. Soit B une base orthonormale de E.
L’application M = Matp : L(E) — M,(R) est un isomorphisme d’espaces vectoriels (et
méme d’algebres) et I'application T : A — ‘A est un automorphisme involutif de M,, (R).
Or,on a :

Ad=M"1oToM,

en effet, pour tout v € L(E) avec A = Matg(u), on a, d’apres la proposition précédente :
M~ oToM(u)=M " T(A)=M"(‘4) =u* = Ad(u).
Donc Ad : L(F) — L(F) est un isomorphisme d’espaces vectoriels comme composée

d’isomorphismes d’espces vectoriels.
De plus, comme T est involutif, on a :

Ad? = (M~ oToM)o(MoToM)=M"'oT?oM=M"0ToM = Ad.

Il en résulte que Ad est un automorphisme involutif de L(E):

Proposition 4.

Pour tous u,v € L(E), (uov)* =v* ou™.

Soit u,v € L(E). Pour tous z,y € E, on a :

(wou()ly) = (u(v(x))ly)
= (v(@)[u(y))
= (z[o"(u"(y)))

(wou(z)ly) = (z[v*ou’(y)).

Donc, par unicité de 'adjoint (u o v)* = v* o u*.
Remarque : on aurait pu également utiliser une base orthonormale et utiliser la caractérisation
matricielle de I’adjoint en remarquant que, pour toutes matrices A, B, t(AB) ='B'A.

Proposition 5.

Soit u € L(E). On a :
Ker(u*) = Im(u)* et Im(u*) = Ker(u)*

Soit u € L(E). Montrons tout d’abord les inclusions suivantes :
— Montrons Ker(u*) C Im(u)t. Soit € Ker(u*). Alors, pour tout y € Im(u), il existe
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x' € E tel que y =u(x’) et on a :

(zly) = (zlu(2")) = (u"(z) |¢') = 0
=0g
D’ou x € Im(u)*. Par suite, Ker(u*) C Im(u)*.

— Montrons que Im(u*) C Ker(u)*. Soit y € Im(u*). Alors il existe z € E tel que y = u*()
et on a, pour tout =’ € Ker(u) :

(ylz") = (v (2)|z") = (z|u(z)) =0
—~—

=0g

D’ou y € Ker(u)t. Par suite, Im(u*) C Ker(u)=.
Montrons les inclusions réciproques. On rappelle que si F' est un sous-espace vectoriel de dimen-
sion finie de E (comme F est euclidien ici, tout sous-espace vectoriel de F est de dimension finie),
(FY)t = Fetsi A,B C E tels que A C B alors B+ C A+.
Ainsi, on a, d’apres les inclusions précédentes appliquées & v = (u*)* = u (car la passage a
Padjoint est involutif) :

Ker(u) = Ker((u*)*) C Im(U*)l

d’ou :
Ker(u)* D Im(u*).

Par suite, Im(u*) = Ker(u)™ .

Im(u) = Im((u*)*) C Ker(u*)*

d’ou :
Im(u)® D Ker(u*).

Par suite, Ker(u*) = Im(u)* .

Exercice 2.

Soit u € L(E). Montrer (par forcément dans I'ordre indiqué) que :
rg(u) =rg(u) Tr(u*) =Tr(uv) det(u") = det(u)
et en terme de réduction :
Xur = Xu  SP(u’) = Sp(u)  Tyr = my.

En déduire les liens potentiels entre diagonalisation/trigonalisation de u et u*.
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Proposition 6.

Soit u € L(F) et F un sous-espace vectoriel de E. Si F' est stable par u, alors F* est stable par

*

u-.

On suppose F stable par u. Soit x € F*. Alors, pour tout y € F, u(y) € F et :

(u*(z)|y) = (\x/lu\(f)/) =0

Dot u*(z) € Ft.
Il en résulte que F est stable par u*. O
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Partie B

[sométries vectorielles et matrices orthogonales

Dans cette partie, n désigne un entier naturel et £ désigne un espace euclidien de dimension n de produit
scalaire noté (+|-), de norme associée notée || - || et de distance associée notée d.

1. Matrices orthogonales

a. Définitions

Définition 2., Matrice orthogonale

Soit M € M, (R). On dit M est une matrice orthogonale si ‘MM = I,,.

On appelle groupe orthogonal d’ordre n et on note O, (R) (ou encore O(n)) ’ensemble des
matrices orthogonales de M, (R) i.e.

On(R) = {M € Mn(R) | MM = I'n}'

Définition-Proposition 3.

Soit M € M, (R). Si M € O,(R) alors det(M) = +1;

— si det(M) =1, on dit M est une matrice orthogonale directe (ou positive);

— sidet(M) = —1, on dit M est une matrice orthogonale indirecte (ou négative);
On appelle groupe spécial orthogonal d’ordre n et on note SO, (R) (ou encore SO(n))
I’ensemble des matrices orthogonales directes i.e.

SOL(R) = {M € O,(R) | det(M) = 1}.

Définition 4. Matrices orthogonalement semblables

Soit A, B € M,(R). On dit que A et B sont orthogonalement semblables s’il existe P €
O,(R) telle que B = PA'P.

b. Propriétés des matrices orthogonales
On justifie ici la terminologie de "groupe” (spécial) orthogonal :
Proposition 7.
Le groupe orthogonal O, (R) est un sous-groupe de GL,(R) et le groupe spécial orthogonal

SO, (R) est un sous-groupe de O, (R).
En particulier, si M € O, (R), ona M~ =M.
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Proposition 8.

Soit M € M, (R). On note C1, ..., Cy, ses colonnes.
La matrice M est une matrice orthogonale si, et seulement si, la famille (C1, ..., C},) est une base
orthonormale de M,, ;1 (R) muni de son produit scalaire canonique.

Le méme résultat est valable pour les lignes de M.

2. Orientation d’un espace vectoriel réel de dimension finie
On rappelle que dans cette partie, E est en particulier un espace vectoriel réel de dimension finie.
Définition 5. Orientation

Soit B et B’ deux bases de E. On dit que B et B’ définissent la méme orientation de E si
det(P) > 0 o P est la matrice de passage de B vers B'.

Orienter l'espace F revient a se fixer une base B de référence. Ce choix étant fait, on appelle
bases directes, les bases qui définissent la méme orientation que B et bases indirectes, les
autres.

Exemple 2.

On oriente R? grace a sa base canonique B = (eq, s, e3). Alors la base (eq, e3,e;) est directe et
la base (e1, es, e2) est indirecte.

Exercice 3.

Montrer que le procédé d’orthonormalisation de Gram-Schmidt ne change pas 'orientation d’une
base.

Proposition 9.

Soit B et B’ deux bases orthonormales de E et P la matrice de passage de B vers B’. Alors
P € O,(R) et de plus, P € SO, (R) si, et seulement si, B, B’ définissent la méme orientation de
E.

Proposition 10.

On suppose que E est orienté. Si B et B’ deux bases orthonormales directes de E, alors detp =
detB/.

3. Isométries vectorielles

a. Définitions et premiéres propriétés

27



Définition 6. Isométrie vectorielle

Soit u € L(E). On dit que u est une isométrie vectorielle (ou également un automorphisme
orthogonal) si, pour tout = € E,
[u(@)[| = [l]]-

On note O(E) l'ensemble des isométries vectorielles de E.

Proposition 11.

Soit u € L(E). Si u € O(F) alors u est un automorphisme de E.

On suppose u € O(E). Alors Ker(u) = {Og}; en effet, si x € Ker(u), alors ||z|| = ||u(z)| =
[0g|| = 0, donc par séparation de la norme, z = Og. Par suite, u est un endomorphisme injectif
en dimension finie : il est donc bijectif ; ainsi, u est un automorphisme de E. O

Proposition 12.

Soit v € O(E). On a Sp(u) C {-1,1}.

Soit A € R. Si A € Sp(u), alors, pour tout vecteur propre unitaire  associé & A, on a :
1= [lz]| = |lu(z)[| = [[Az] = [Alllz]|-

D’ou A = %1. O
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