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Dans ce chapitre, E désigne un espace vectoriel réel (pas forcément de dimension finie).

Rappels sur les espaces préhilbertiens réels
Partie ∗Partie ∗

1. Rappels sur le produit scalaire

a. Produit scalaire

Définition ∗1.Définition ∗1. gProduit scalaireProduit scalaire

Une application φ : E×E → R est appelée produit scalaire sur E si φ est une forme bilinéaire
symétrique définie positive de E × E dans R.

Remarque ∗1.Remarque ∗1.

Usuellement, on note un produit scalaire de deux vecteurs (u|v), 〈u|v〉, 〈u, v〉 ou même u · v.
Dans la suite, on utilisera principalement la notation (·|·).

Exercice ∗1.Exercice ∗1.

Donner des exemples de produits scalaires sur les espaces : Rn, ℓ2(R), C(I) où I est un intervalle
fermé borné de R et Mn(R).

Correction.

— pour x = (x1, ..., xn) et y = (y1, ..., yn) des vecteurs de Rn, le produit scalaire canonique
est donné par :

(x|y) =
n∑

i=1

xiyi

— pour u = (un)n∈N et v = (vn)n∈N des vecteurs de ℓ2(R), le produit scalaire canonique est
donné par :

(u|v) =
∞∑
i=0

uivi

— pour f et g des vecteurs de C(I), le produit scalaire canonique est donné par :

(f |g) =
∫
I

f(t)g(t)dt
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— pour A et B des vecteurs de Mn(R), le produit scalaire canonique est donné par :

(A|B) = Tr(tAB) =
∑

1≤i,j≤n

ai,jbi,j

Définition ∗2.Définition ∗2. gEspace préhilbertienEspace préhilbertien

Soit (·|·) un produit scalaire sur E. Le couple (E, (·|·)), ou simplement E s’il n’y a pas d’ambi-
guïté, est appelé espace préhilbertien.
Si de plus E est de dimension finie, on dit que (E, (·|·)) est un espace euclidien.

Exemple ∗1.Exemple ∗1. gImportantImportant

L’espace vectoriel Mn,1(R) muni du produit scalaire 〈·, ·〉 où, pour tous X =

x1

...
xn

 , Y =

y1
...
yn

,

〈X,Y 〉 =
n∑

i=1

xiyi =
tXY,

est un espace euclidien. Le produit scalaire précédent est souvent désigné comme le produit
scalaire canonique de Mn,1.

b. Norme associée à un produit scalaire

Définition ∗3.Définition ∗3. gNorme associé au produit scalaireNorme associé au produit scalaire

Soit E un espace préhilbertien réel. On note ‖ · ‖ et on appelle norme associée au produit
scalaire (·|·), l’application :

‖ · ‖ : E → R+

x 7→ ‖x‖ =
√
(x|x).

De plus, on note d : E × E → R+ et on appelle distance associée à ‖ · ‖, l’application définie,
pour x, y ∈ E, par :

d(x, y) = ‖x− y‖.

Théorème ∗1.Théorème ∗1. gInégalité de Cauchy-SchwarzInégalité de Cauchy-Schwarz

Soit E un espace préhilbertien réel. On a l’inégalité suivante, pour tous x, y ∈ E :

|(x|y)| ≤ ‖x‖‖y‖

Et de plus, on a |(x|y)| = ‖x‖‖y‖ si, et seulement si, x et y sont colinéaires.
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Démonstration.

Soit x, y ∈ E et t ∈ R. On considère la fonction f : R → R définie, pour t ∈ R, par :

f(t) = ‖tx+ y‖2 = (tx+ y|tx+ y).

Alors on a, pour tout t ∈ R,

f(t) = t2(x|x) + 2(x|y) + (y|y) = t2‖x‖2 + 2(x|y) + ‖y‖2.

Pour x 6= 0E , f est une fonction polynomiale de degré 2 et on a f(t) ≥ 0 pour tout t ∈ R, donc
son discriminant ∆ est négatif i.e.

∆ = 4(x|y)2 − 4‖x‖2‖y‖2 ≤ 0.

Par suite,
(x|y)2 ≤ (‖x‖‖y‖)2

Et cette inégalité est trivialement vraie pour x = 0E - et c’est même une égalité dans ce cas. La
fonction racine étant croissante sur R+, il en résulte que pour tous x, y ∈ E :

|(x|y)| ≤ ‖x‖‖y‖.

De plus, si x 6= 0E et y colinéaire à x, alors il existe λ ∈ R tel que y = λx et

|(x|y)| = |λ|‖x‖2 = ±‖x‖.|λ|‖x‖ = ‖x‖‖y‖.

Réciproquement, pour x 6= 0E , si l’égalité est vérifiée, alors ∆ = 4(x|y)2 − 4‖x‖2‖y‖2 = 0 donc f
possède une racine λ i.e.

(λx+ y|λx+ y) = f(λ) = 0.

Donc par définie positivité du produit scalaire, λx+ y = 0E ; d’où x et y sont colinéaires.

Proposition ∗1.Proposition ∗1.

Soit E un espace préhilbertien réel. La norme ‖ · ‖ associée au produit scalaire est une norme
sur E.

Démonstration.

• ‖ · ‖ est positive par positivité du produit scalaire).
• Soit x ∈ E. Si ‖x‖ = 0, alors (x|x) = 0 donc x = 0E car le produit scalaire est défini

positif.
• Soit x ∈ E et λ ∈ R. Par bilinéarité de (·|·), on a :

‖λx‖2 = (λx|λx) = λ2(x|x) = λ2‖x‖2,

d’où l’homogénéité.
• Soit x, y ∈ E. On a :

‖x+ y‖2 = (x+ y|x+ y) = ‖x‖2 + 2(x|y) + ‖y‖2,
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donc, d’après l’inégalité de Cauchy-Schwarz :

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

d’où l’inégalité triangulaire.

Exercice ∗2.Exercice ∗2.

Soit x, y ∈ E. Démontrer les égalités suivantes :
1. d(x, y) =

√
‖x‖2 + ‖y‖2 − 2(x|y).

2. ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
(Identité du parallélogramme).

3. (x|y) = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
(Identité de polarisation).

Correction.

Tout cet exerice repose sur les égalités :

‖x± y‖2 = (x± y|x± y) = ‖x‖2 ± 2(x|y) + ‖y‖2.

1. On a :
d(x, y)2 = ‖x− y‖2

= ‖x‖2 − 2(x|y) + ‖y‖2

d’où le résultat.

2. On a :

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + 2(x|y) + ‖y‖2 + (‖x‖2 − 2(x|y) + ‖y‖2)
= 2‖x‖2 + 2‖y‖2

= 2
(
‖x‖2 + ‖y‖2

)
3. On a :

‖x+ y‖2 − ‖x− y‖2 = ‖x‖2 + 2(x|y) + ‖y‖2 − (‖x‖2 − 2(x|y) + ‖y‖2)
= 4(x|y)

d’où le résultat.

2. Rappels et compléments sur l’orthogonalité

Définition ∗4.Définition ∗4. gOrthogonalitéOrthogonalité

Soit E un espace préhilbertien réel.
— Soit x, y ∈ E. On dit que x et y sont orthogonaux et on note x ⊥ y si (x|y) = 0.
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— Soit A ⊂ E. On note A⊥ et on appelle orthogonal de A, l’ensemble :

A⊥ = {x ∈ E | ∀ a ∈ A, (a|x) = 0}.

— Soit F,G des sous-espaces vectoriels de E. On dit que F et G sont orthogonaux et on
note F ⊥ G si, pour tout x ∈ F et tout y ∈ G, (x|y) = 0. Autrement dit si F ⊂ G⊥ (ou
de manière équivalente, G ⊂ F⊥).

Exercice ∗3.Exercice ∗3.

Soit E un espace préhilbertien réel et A ⊂ E.
— Montrer que A⊥ est un sous-espace vectoriel de E de deux façons.
— Montrer que A⊥ est un fermé de E pour la norme ‖ · ‖.

Correction.

1. Pour la première façon, il s’agit d’utiliser la définition de sous-espace vectoriel.
Pour la deuxième, on remarque que A⊥ =

⋂
a∈A Ker(φa) où, pour a ∈ A, φa : x 7→ (a|x),

donc A⊥ est un sous-espace vectoriel de E comme intersection de sous-espaces vectoriels
de E.

2. On reprend l’égalité A⊥ =
⋂

a∈A Ker(φa) et on remarque que :
— pour a ∈ A et x ∈ X, d’après l’inégalité de Cauchy-Schwarz,

|fa(x)| = |(a|x)| ≤ ‖a‖‖x‖.

Donc fa est ‖a‖-lipschitzienne et donc continue pour ‖ · ‖.
— Ker(φa) = φ−1

a ({0}) donc Ker(φa) est un fermé pour ‖ ·‖ comme image réciproque d’un
fermé par une application continue.

Par suite, A⊥ est fermé pour ‖ · ‖ comme intersection de fermé.

Exemple ∗2.Exemple ∗2.

— Dans un espace préhilbertien réel E, on a : E⊥ = {0E} et {0E}⊥ = E.
— Dans R2 muni de son produit scalaire canonique, {(1,−1)}⊥ = {(x, x) | x ∈ R}.
— Dans R3 muni de son produit scalaire canonique,

Vect((1, 1, 1), (1, 2, 3)) ⊥ Vect(1,−2, 1).

Définition ∗5.Définition ∗5. gFamille orthogonale/orthonormaleFamille orthogonale/orthonormale

Soit E un espace préhilbertien réel et F = (xi)i∈I une famille de vecteurs de E. On dit que F
est :
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— orthogonale si, pour tous i, j ∈ I avec i 6= j,

(xi|xj) = 0.

— orthonormale si, pour tous i, j ∈ I,

(xi|xj) = δij =

{
0 si i 6= j

1 si i = j

On dit qu’une famille de E est une base orthonormale si c’est une base et une famille ortho-
normale.

Exercice ∗4.Exercice ∗4.

Soit E un espace préhilbertien réel et n ∈ N∗. Montrer les proposition suivantes :

1. Toute famille orthogonale de vecteurs non nuls de E est libre.

2. On suppose que E admet une base orthonormale B = (ei)i∈I . Montrer que, pour tous
x, y ∈ E de décompositions dans B, x =

∑
i∈I xiei et y =

∑
i∈I yiei (sommes finies), on

a :
(x|y) =

∑
i∈I

xiyi et x =
∑
i∈I

(x|ei)ei.

3. (Théorème de Pythagore) Soit (x1, ...xn) une famille finie orthogonale de vecteurs de E.
Alors ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
2

=

n∑
i=1

‖xi‖2.

Proposition 1.Proposition 1.

Soit (E, (·|·)) un espace euclidien de dimension n, B une base orthonormale de E. Pour tous
x, y ∈ E, on a :

(x|y) = tXY (= 〈X,Y 〉) où X = MatB(x), Y = MatB(y).

Démonstration.

Soit x, y ∈ E. On note e1, ..., en les vecteurs de B. Alors, si on note x =
∑n

i=1 xiei et y =
∑n

i=1 yiei
les décompositions de x, y dans B, par bilinéarité du produit scalaire (·|·) et par orthonormalité

de B, on a, X =

x1

...
xn

 , Y =

y1
...
yn

 et :

(x|y) =
n∑

i=1

xiyi =
tXY
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Proposition ∗2.Proposition ∗2. gMatrice d’un endormrphisme dans une base orthonormaleMatrice d’un endormrphisme dans une base orthonormale

Soit E un espace euclidien, u ∈ L(E) et B = (e1, ..., en) une base orthonormale de E. Si on
note A = MatB(u), alors :

A = ((u(ej)|ei))1≤i,j≤n ,

et, pour tous x, y ∈ E,

(u(x)|y) = tXtAY = tY AX où X = MatB(x), Y = MatB(y).

Démonstration.

On note A = MatB(u) = (aij)1≤i,j≤n.
— Soit j ∈ J1, nK. D’une part, comme B est orthonormale, on a u(ej) =

∑n
i=1(u(ej)|ei)ei et

d’autre part, par définition de A, u(ej) =
∑n

i=1 aijei ; ainsi, par unicité de la décomposition
d’un vecteur dans une base, pour tout i ∈ J1, nK, aij = (u(ej)|ei).

— Soit x, y ∈ E. On note X = MatB(x), Y = MatB(y). Alors MatB(u(x)) = AX et donc :

(u(x)|y) = tAXY = tXtAY.

Proposition ∗3.Proposition ∗3. gOrthonormalisation de Gram-SchmidtOrthonormalisation de Gram-Schmidt

Soit E un espace préhilbertien réel et (x1, ..., xn) une famille libre de E. Alors il existe une
famille (e1, ..., en) orthonormale de E telle que, pour tout k ∈ J1, nK :

Vect(e1, ..., ek) = Vect(x1, ..., xk).

Plus précisément, on peut construire un telle famille (e1, ..., en) par le procédé de Gram-Schmidt :
pour k = 1, ..., n

ek =
εk

‖εk‖
où εk = xk −

k−1∑
i=1

(xk|ei)ei.

Démonstration.

On raisonne par récurrence finie sur k ∈ J1, nK pour montrer que Vect(e1, ..., ek) = Vect(x1, ..., xk)
où les ei sont donnés par le procédé de Gram-Schmidt :

• Initialisation. Pour k = 1, la propriété est vraie car

e1 =
ε1
‖ε1‖

=
x1

‖x1‖
.

• Hérédité. Soit k ∈ J1, n − 1K. On suppose la propriété vraie pour k. On a, par hypothèse
de récurrence :

εk+1 = xk+1 +

k∑
i=1

(xk+1|ei)ei︸ ︷︷ ︸
∈Vect(x1,...,xk)

∈ Vect(x1, ..., xk+1).
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Par suite, ek+1 =
εk+1

‖εk+1‖
∈ Vect(x1, ..., xk+1). De plus, on a, pour l ∈ J1, kK,

(εk+1|εl) = (xk+1 −
k∑

i=1

(xk+1|ei)ei|xl −
l−1∑
i=1

(xl|ei)ei)

= (xk+1|xl)−
k∑

i=1

(xk+1|ei)(xl|ei)−
l−1∑
i=1

(xl|ei)(xk+1|ei) +
l−1∑
i=1

k∑
j=1

(xl|ei)(xk+1|ej) (ei|ej)︸ ︷︷ ︸
=0 si j ̸=i

= (xk+1|xl)−
k∑

i=1

(xk+1|ei)(xl|ei)−
l−1∑
i=1

(xl|ei)(xk+1|ei) +
l−1∑
i=1

(xl|ei)(xk+1|ei)

= (xk+1|xl)−
k∑

i=1

(xk+1|ei)(xl|ei)−
l−1∑
i=1

(xl|ei)(xk+1|ei) +
l−1∑
i=1

(xl|ei)(xk+1|ei)

Corollaire ∗1.Corollaire ∗1.

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie. Alors F
admet une base orthonormale.

Démonstration.

Comme F est de dimension finie (disons p), il existe une base B = (x1, ..., xp) de F . Alors on
orthonormalise cette base grâce au procédé de Gram-Schmidt pour obtenir une base B′ ortho-
normale de F .

Exercice ∗5.Exercice ∗5.

On munit R3 de son produit scalaire canonique. Déterminer, grâce au procédé de Gram-Schmidt,
la base orthonormale de R3 obtenue à partir de la base formée des vecteurs :

(1, 1, 1), (1, 2, 3), (1,−2, 1).

Remarque ∗2.Remarque ∗2.

Pour A,B ⊂ E et F un sous-espace vectoriel de E, on a les propriétés suivantes :
— Si A ⊂ B alors B⊥ ⊂ A⊥,
— A ⊂ (A⊥)⊥.

Définition-Proposition ∗6.Définition-Proposition ∗6. gSomme directe orthogonaleSomme directe orthogonale

Soit n ∈ N∗, E un espace préhilbertien réel et (Fi)i∈J1,nK une famille de sous-espaces vectoriels
de E.
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Si F1, ..., Fn sont deux à deux orthogonaux, alors ils sont en somme directe.
Dans ce cas, on dit que F1, ..., Fn sont en somme directe orthogonale et on note F1

⊥
⊕ ...

⊥
⊕Fn

la somme F1 ⊕ ...⊕ Fn.

Démonstration.

On suppose que, pour tous i, j ∈ J1, nK, Fi ⊥ Fj .
Soit y = x1 + ... + xn ∈

∑n
i=1 Fi où, pour tout i ∈ J1, nK, xi ∈ Fi. On suppose y = 0E . Alors,

pour tout j ∈ J1, nK, on a, par linéarité par rapport à la première variable du produit scalaire :

0 = (y|xj) =

(
n∑

i=1

xi | xj

)
=

n∑
i=1

(xi|xj)︸ ︷︷ ︸
=0 si i ̸=j

= (xj |xj),

et donc xj = 0E par définie positivité du produit scalaire.
Il en résulte que F1, ..., Fn sont en somme directe.

Proposition ∗4.Proposition ∗4.

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E. Les sous-espaces vectoriels
F et F⊥ sont en somme directe orthogonale.

Démonstration.

Soit x ∈ F ∩ F⊥. Alors ( x︸︷︷︸
∈F

| x︸︷︷︸
∈F⊥

) = 0 donc par définie positivité de (·|·), x = 0E .

De plus, par définition, F ⊥ F⊥.
Par suite, F et F⊥ sont en somme directe orthogonale.

Définition ∗7.Définition ∗7. gSupplémentaire orthogonalSupplémentaire orthogonal

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E.

On dit que F admet un supplémentaire orthogonale dans E si F
⊥
⊕ F⊥ = E et dans ce

cas, on dit que F⊥ est le supplémentaire orthogonal de F dans E.

Proposition ∗5.Proposition ∗5.

Soit E un espace préhilbertien réel et F,G des sous-espaces vectoriels de E.
— On suppose que F et G sont supplémentaires. Alors F ⊥ G si, et seulement si, G = F⊥.

— Si E = F
⊥
⊕ F⊥, alors (F⊥)⊥ = F .
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Démonstration.

— On suppose F ⊥ G. Alors G ⊂ F⊥. Montrons l’inclusion réciproque.
Soit x ∈ F⊥ = E = F ⊕G. Alors x = xF︸︷︷︸

∈F

+ xG︸︷︷︸
∈G

et on a :

(x− xG|x− xG) = (x− xG|xF )

= (x|xF )︸ ︷︷ ︸
=0

− (x|xG)︸ ︷︷ ︸
=0

= 0.
Donc, par définie positivité de (·|·), x− xG = 0E , d’où x = xG ∈ G.
Par suite, G = F⊥.
La réciproque est immédiate car F⊥ ⊥ F .

— On applique le point précédent à ”F” = F⊥ et ”G” = F . Comme F⊥ ⊥ F , on obtient
alors F = (F⊥)⊥.

Exemple ∗3.Exemple ∗3.

On considère les espaces vectoriels suivants munis de leurs produits scalaires canoniques respectifs.

— Dans R3, on considère le plan P d’équation P : x+y = 0. Alors la droite P⊥ = Vect(1, 1, 0)
est le supplémentaire orthogonal de P.

— Dans C([0, 1],R), on considère le sous-espace vectoriel F des fonctions constantes. Alors
le sous-espace des fonctions d’intégrale nulle est le supplémentaire orthogonal de F .

— Dans ℓ2(N), on considère le sous-espace vectoriel F des suites stationnaires en 0. Alors
F⊥ = {0ℓ2(N)} et donc F n’admet pas de supplémentaire orthogonal.

— Comme l’équation de P est x+ y = 0, le vecteur (1, 1, 0) est normal (i.e. orthogonal) à P.
Ainsi, Vect(1, 1, 0) ⊥ P et ils sont donc en somme directe d’après la définition-proposition
6. De plus, on a dim(P) + dim(Vect(1, 1, 0)) = 3 = dim(R3) donc ils sont supplémentaires.
Il en résulte, d’après la proposition 5, que Vect(1, 1, 0) est le supplémentaire orthogonal de
P.

— En analysant le problème, on remarque que si f ∈ F⊥, alors
∫ 1

0
f(t) dt = (f |1) = 0.

On conjecture donc que :

F⊥ = {f ∈ E |
∫ 1

0

f(t) dt = 0} = {1}⊥.

Montrons le par double inclusion :
⊂. Soit f ∈ F⊥. Alors, en particulier, on a 1 ∈ F donc :

( f︸︷︷︸
∈F⊥

| 1︸︷︷︸
∈F

) = 0

D’où f ∈ {1}⊥ = {f ∈ E |
∫ 1

0

f(t) dt = 0}.

⊃. Soit f ∈ {1}⊥. Pour tout g ∈ F , g est constante sur [0, 1] donc il existe c ∈ R tel que
g = c1, d’où :

(f |g) = (f |c1) = c(f |1) = 0
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Par suite, pour tout g ∈ F , (f |g) = 0 et donc f ∈ F⊥.
Notre conjecture est donc vérifiée.

— Pour k ∈ N, on considère la suite u(k) = (u(k)n)n∈N, définie, pour n ∈ N, par :

u(k)n = δkn =

{
1 si n = k

0 si n 6= k

Alors, pour tout k ∈ N, on a u(k) ∈ F car u(k) est stationnaire en 0 à partir du rang k+1.

Soit v = (vn)n∈N ∈ F⊥. On a alors, pour tout k ∈ N :

0 = (u(k)|v) =
+∞∑
n=0

δknvn = vk,

donc v est la suite nulle.
Il en résulte que F⊥ = {0ℓ2(N)}.

Proposition ∗6.Proposition ∗6.

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E de dimension finie.

Alors E = F
⊥
⊕ F⊥ et (F⊥)⊥ = F .

Démonstration.

D’après la proposition 4, F et F⊥ sont en somme directe orthogonale. Montrons alors que E =
F + F⊥.
Soit x ∈ E. Le sous-espace vectoriel F de E est de dimension finie alors on peut considérer une
base orthonormale B = (e1, ..., ep) de F . On pose xF =

∑p
i=1(x|ei)ei ∈ F . Alors on a, pour tout

j ∈ J1, pK :

(x− xF |ej) = (x|ej)− (xF |ej)

= (x|ej)−
p∑

i=1

(x|ei)(ei|ej)

= (x|ej)− (x|ej) = 0.

Par suite, x− xF est orthogonal avec chacun des éléments d’une base de F , donc x− xF ∈ F⊥.
Ainsi, x = xF + (x− xF ) ∈ F + F⊥.

Il en résulte que E = F
⊥
⊕ F⊥.

De plus, d’après ce qui précède, on a E = F
⊥
⊕ F⊥ et on applique alors la proposition 5.
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Corollaire ∗2.Corollaire ∗2.

Soit E un espace euclidien et F un sous-espace vectoriel de E. Alors

dim(F ) + dim(F⊥) = dim(E).

Démonstration.

Comme E est de dimension finie, alors F et F⊥ sont de dimension finie et donc d’après la
proposition précédente, on a E = F

⊥
⊕ F⊥, d’où le résultat.

Exercice ∗6.Exercice ∗6.

Soit E = C([0, 1],R) muni de son produit scalaire canonique. On pose

F = {f ∈ E | ∀ t ∈ [0, 1], f(1− t) = f(t)} et G = {f ∈ E | f(0) = 0}.

1. Démontrer que F et G sont des sous-espaces vectoriels de E.

2. Déterminer F⊥ et G⊥.

3. Que peut-on dire alors des supplémentaires orthogonaux des sous-espaces de dimension
inifnie ?

Correction.

1. — On a F = Ker(u) où u : E → E est l’application linéaire u : f 7→ u(f) : t 7→ f(t)−f(1−
t), donc F est une sous-espace vectoriel de E comme noyau d’une application linéaire
d’espace de départ E.

— On a G = Ker(φ) où φ : E → R est la forme linéaire φ : f 7→ f(0), donc G est une
sous-espace vectoriel de E comme noyau d’une application linéaire d’espace de départ
E.

2. — Analysons le problème : si g ∈ E, alors, pour tout f ∈ F , on a, en effectuant le change-
ment de variable x = 1− t :

(f |g) =

∫ 1

0

f(t)g(t) dt

=

∫ 1
2

0

f(t)g(t) dt+
∫ 1

1
2

f(t)g(t) dt

=

∫ 1
2

0

f(t)g(t) dt−
∫ 0

1
2

f(1− t)︸ ︷︷ ︸
=f(t)

g(1− t) dt

(f |g) =

∫ 1
2

0

f(t)(g(t) + g(1− t)) dt

Si g ∈ F⊥, cette quantité doit être nulle et comme la fonction f peut prendre toutes les
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valeurs possibles sur [0, 1
2 ], on conjecture que :

F⊥ = {g ∈ E | ∀ t ∈ [0, 1], g(1− t) = −g(t)}.

Montrons la par double inclusion :
⊂. Soit g ∈ F⊥. On considère la fonction f : t 7→ g(t) + g(1 − t). Celle-ci est continue

sur E car g l’est et on a, pour tout t ∈ [0, 1], f(1− t) = g(1− t) + g(t) = f(t) ; d’où
f ∈ F .
Alors, d’après la calcul effectué dans l’analyse précédente, on a :

0 = (f |g) =
∫ 1

2

0

f(t)(g(1− t) + g(t)) dt =
∫ 1

2

0

f(t)2 dt

La fonction f est ainsi continue, positive et d’intégrale nulle sur [0, 1
2 ] et donc, f est

nulle sur [0, 1
2 ].

De plus, pour tout t ∈ [ 12 , 1], 1−t ∈ [0, 1
2 ] donc, comme f ∈ F , on a f(t) = f(1−t) =

0.
Il en résulte que f = 0E i.e. pour tout t ∈ [0, 1], f(t) = 0 et donc g(1− t) = −g(t).
D’où F⊥ ⊂ {g ∈ E | ∀ t ∈ [0, 1], g(1− t) = −g(t)}.

⊃. Soit g ∈ E telle que, pour tout t ∈ [0, 1], g(1 − t) = −g(t). Alors, pour tout f ∈ F ,
on a, en utilisant le calcul effectué dans l’analyse initiale :

(f |g) =
∫ 1

2

0

f(t) (g(t) + g(1− t))︸ ︷︷ ︸
=0

dt = 0.

Par suite, g ∈ F⊥. Ainsi, {g ∈ E | ∀ t ∈ [0, 1], g(1− t) = −g(t)} ⊂ F⊥.
Notre conjecture est donc vérifiée.

— En analysant le problème, on se rend compte que si f ∈ G⊥, f doit être nulle sur ]0, 1]
et donc, par continuité de f en 0, que f = 0E .
On conjecture ainsi que G⊥ = {0E}. Montrons l’inclusion G⊥ ⊂ {0E} ; la seconde
inclusion étant immédiate car G⊥ est un sous-espace vectoriel de E.
Soit f ∈ G⊥. On considère g : t 7→ tf(t). Alors g est continue sur [0, 1] comme produit
de fonctions continues sur [0, 1] et g(0) = 0f(0) = 0 donc g ∈ G.
Par suite, on a, d’une part, (f |g) = 0 et d’autre part :

(f |g) =
∫ 1

0

f(t)g(t) dt =
∫ 1

0

tf(t)2 dt.

Par suite, la fonction t 7→ tf(t)2 est continue, positive et d’intégrale nulle sur [0, 1], donc
elle est égale à la fonction nulle sur [0, 1].
Ainsi, pour tout t ∈ ]0, 1], f(t) = 0 car tf(t)2 = 0.
De plus, f est continue en 0 et limx→0+ f(t) = limx→0+ 0 = 0 donc f(0) = 0.
Par suite, f est égal à 0E .
Il en résulte que G⊥ = {0E}.

3. Les espaces F et G sont des sous-espaces de dimension infinie de E (la famille (t 7→
(t(1 − t)n)n∈N est une famille libre de F et (t 7→ tn)n∈N∗ est une famille libre de G)
et, d’après ce qui précède, F possède un supplémentaire orthogonal (et on remarque que ce
supplémentaire est de dimension infinie lui aussi) alors que G n’en admet pas.
Conclusion : pour les sous-espaces de dimension infinie, on ne peut rien dire quant à l’exis-
tence d’un supplémentaire orthogonal en général !
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Projection orthogonale
Partie ∗∗Partie ∗∗

Dans cette partie, E désigne un espace préhilbertien réel de produit scalaire noté (·|·), de norme associée
notée ‖ · ‖ et de distance associée notée d.

1. Projection orthogonale sur un sous-espace vectoriel de dimension finie

Définition ∗∗1.Définition ∗∗1. gProjection orthogonaleProjection orthogonale

Soit F un sous-espace vectoriel de dimension finie de E. On appelle projection orthogonale
sur F et on note pF , la projection sur F parallèlement à son supplémentaire orthogonal F⊥.
L’image pF (x) d’un vecteur x ∈ E par la projection orthogonale sur F est appelée projeté
orthogonal de x sur F .

Remarque ∗∗1.Remarque ∗∗1.

Pour F un sous-espace vectoriel de E de dimension finie, on a Im(pF ) = F et Ker(pF ) = F⊥.

Proposition ∗∗1.Proposition ∗∗1.

Soit F un sous-espace vectoriel de E de dimension finie p, B = (e1, ..., ep) une base orthonormale
de F et x ∈ E. Alors la projection orthogonale de x sur F vérifie :

pF (x) =

p∑
i=1

(x|ei)ei.

Démonstration.

Comme dans la démonstration de 6, on décompose x = y + z avec y =
∑p

i=1(x|ei)ei ∈ F et
z ∈ F⊥. Par suite,

pF (x) = pF (y)︸ ︷︷ ︸
=y

+ pF (z)︸ ︷︷ ︸
=0E

=

p∑
i=1

(x|ei)ei.

Remarque ∗∗2.Remarque ∗∗2.

La famille orthonormale (e1, ..., en) obtenue à partir d’une famille (x1, ...xn) libre de E grâce au
procédé de Gram-Schmidt peut alors s’exprimer de la façon suivante : pour k = 1, ..., n− 1, on
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note
Fk = Vect(x1, ...xk) (= Vect(e1, ...ek)) .

et on a :
ek+1 =

1

‖εk+1‖
εk+1 où εk+1 = xk+1 − pFk

(xk+1);

de plus,
‖εk+1‖ =

√
‖xk+1‖2 − ‖pFk

(xk+1)‖2.

Proposition ∗∗2.Proposition ∗∗2.

Soit F un sous-espace vectoriel de dimension finie de E et (x1, ..., xk) une famille génératrice de
F . Pour x, y ∈ E, on a :

y = pF (x) ⇔

{
y ∈ F

(x− y|xi) = 0 ∀i ∈ J1, kK.
Exercice ∗∗1.Exercice ∗∗1.

Soit n ∈ N∗. On munit R[X] du produit scalaire

(P |Q) =

∫ 1

0

P (t)Q(t)dt.

Déterminer la projection orthogonale de Xn sur F = R1[X].

Correction.

On a deg(pF (Xn)) = 1 donc pF (X
n) = aX + b. De plus, on a :

{
(Xn − pF (X

n)|1) = 0

(Xn − pF (X
n)|X) = 0

⇔


1

n+ 1
=

a+ 2b

2
1

n+ 2
=

2a+ 3b

6

⇔


a =

6n

(n+ 1)(n+ 2)

b =
2− 2n

(n+ 1)(n+ 2)

d’où pF (X
n) = 1

(n+1)(n+2) (6nX + 2− 2n).

2. Distance à un sous-espace de dimension finie
On rappelle ici la définition de distance à une partie de E :

Définition ∗∗2.Définition ∗∗2. gDistance à une partieDistance à une partie

Soit x ∈ E et A ⊂ E. On appelle distance de x à A et on note d(x,A) la quantité
d(x,A) = inf

a∈A
d(x, a).
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Proposition ∗∗3.Proposition ∗∗3.

Soit F un sous-espace vectoriel de dimension finie de E et x ∈ E. Alors la distance d(x, F ) de x
à F est atteinte en un unique point de F : le projeté orthogonale pF (x) de x sur F . Autrement
dit :

— d(x, F ) = ‖x− pF (x)‖ et ;
— pour tout y ∈ F , d(x, F ) = ‖x− y‖ implique y = pF (x).

Démonstration.

Soit y ∈ F . Alors on a x− y = x− pF (x)︸ ︷︷ ︸
∈F⊥

+ pF (x)− y︸ ︷︷ ︸
∈F

.

D’après le théorème de Pythagore, on a

‖x− y‖2 = ‖x− pF (x)‖2 + ‖pF (x)− y‖2 ≥ ‖x− pF (x)‖2.

Ceci étant vrai pour tout y ∈ F , on a : d(x, F ) ≥ ‖x − pF (x)‖. Or, pF (x) ∈ F donc d(x, F ) ≤
‖x− pF (x)‖. Il en résulte que d(x, F ) = ‖x− pF (x)‖.
De plus, pour y ∈ F , si d(x, F ) = ‖x− y‖, alors, d’après le théorème de Pythagore,

‖y − pF (x)‖2 = ‖x− y‖2 − ‖x− pF (x)‖2 = ‖x− y‖2 − d(x, F )2 = 0.

Exercice ∗∗2.Exercice ∗∗2.

Déterminer la quantité A = inf(a,b)∈R2

∫ 1

0
(t2 − at− b)2dt.

Correction.

On remarque, en considérant R[X] muni du produit scalaire (P |Q) =
∫ 1

0
P (t)Q(t)dt et en notant

R1[X], que

A = inf
(a,b)∈R2

∫ 1

0

(t2 − at− b)2dt = d(X2, F )2 = d(X2, pF (X
2))2

En reprenant le résultat de l’exercice ∗∗1, on obtient pF (X
2) = X − 1

6 , d’où

A =

∫ 1

0

(t2 − t+
1

6
)2dt =

1

180
.

Corollaire ∗∗1.Corollaire ∗∗1.

Soit F un sous-espace de dimension finie k, B = (e1, ..., ek) une base orthonormale de F et
x ∈ E. Alors on a :

d(x, F )2 = ‖x‖2 −
k∑

i=1

(ei|x)2.
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Démonstration.

On a pF (x) =
∑k

i=1(ei|x)ei, et x− pF (x) ⊥ pF (x), donc, d’après le théorème de Pythagore :

d(x, F )2 = ‖x− pF (x)‖2 = ‖x‖2 − ‖pF (x)‖2 = ‖x‖2 −
k∑

i=1

(ei|x)2.

Théorème ∗∗1.Théorème ∗∗1.

Soit (e1, ..., ek) une famille orthonormale de E. Alors on a :

k∑
i=1

(ei|x)2 ≤ ‖x‖2.

Démonstration.

On applique le corollaire précédent à F = Vect(e1, ..., ek). Alors on a :

‖x‖2 = d(x, F )2 +

k∑
i=1

(ei|x)2 ≥
k∑

i=1

(ei|x)2.
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Adjoint d’un endomorphisme
Partie APartie A

Dans cette partie, n désigne un entier naturel et E désigne un espace euclidien de dimension n de produit
scalaire noté (·|·), de norme associée notée ‖ · ‖ et de distance associée notée d.

1. Représentation des formes linéaires

Théorème 1.Théorème 1. gThéorème de représentation de RieszThéorème de représentation de Riesz

Soit φ une forme linéaire sur l’espace euclidien E. Alors il existe un unique vecteur a ∈ E tel
que, pour tout x ∈ E,

φ(x) = (a|x).

Démonstration.

On considère une base orthonormale B = (e1, ..., en) de E.
• Existence : On pose a =

∑n
i=1 φ(ei)ei. Alors, pour tout x =

∑n
i=1 xiei ∈ E, on a, par

linéarité de f :

(a|x) =
n∑

i=1

xiφ(ei) = φ(

n∑
i=1

xiei) = φ(x).

• Unicité : Soit a, b ∈ E tels que, pour tous x ∈ E, (a|x) = φ(x) = (b|x). Alors, pour tous
x ∈ E :

(a− b|x) = (a|x)− (b|x) = φ(x)− φ(x) = 0.

Ainsi, a− b appartient à l’orthogonal de E d’où a− b = 0E i.e. a = b.

Corollaire 1.Corollaire 1.

Soit H un hyperplan de E. Il existe un vecteur non nul n ∈ E tel que H = {n}⊥.

Démonstration.

Soit H un hyperplan de E. Alors il existe une forme linéaire non nulle φ telle que H = Ker(φ).
D’après le théorème de représentation de Riesz, il existe (un unique) n ∈ E tel que φ : x 7→ (n|x) ;
de plus, comme φ 6= 0, n 6= 0E et on a :

H = Ker(φ) = {x ∈ E | (n|x) = φ(x) = 0} = {n}⊥.
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Remarque 1.Remarque 1.

Un tel vecteur n est appelé vecteur normal à H ; il n’y a pas unicité d’un vecteur normal : en
effet, si n est normal à H, pour λ ∈ R∗, λn est normal à H.

Exercice 1.Exercice 1.

Soit φ une forme linéaire sur Mn(R). Montrer qu’il existe une unique matrice A ∈ Mn(R) telle
que pour tout M ∈ Mn(R),

φ(M) = Tr(AM).

Démonstration.

On munit Mn(R) du produit scalaire (M |N) = Tr(tMN). Comme φ est une forme linéaire,
d’après le théorème de représentation de Riesz, il existe un unique B ∈ Mn(R) tel que pour tout
M ∈ Mn(R), φ(M) = (B|M) = Tr(tBM). Ainsi, en posant A = tB, on obtient :

φ(M) = Tr(AM),

et de plus, A est unique par unicité de B.

2. Adjoint d’un endomorphisme

Lemme 1.Lemme 1.

Soit u ∈ L(E). Il existe un unique v ∈ L(E) tel que, pour tous x, y ∈ E :

(u(x)|y) = (x|v(y)).

Démonstration.

• Existence : Soit y ∈ E. On note φ : E → R l’application définie, pour x ∈ E par
φy(x) = (u(x)|y). Par linéarité de u et du produit scalaire par rapport à sa première
variable, φ est une forme linéaire sur l’espace euclidien E. Ainsi, d’après le théorème de
représentation de Riesz, il existe un unique vecteur ay ∈ E tel que φy(x) = (ay|x) pour
tous x ∈ E.
Par suite, l’application v : y 7→ ay est bien définie de E dans lui-même et on a alors, pour
tous x, y ∈ E :

(u(x)|y) = φy(x) = (ay|x) = (x|ay) = (x|v(y)).

De plus, pour y, z ∈ E et λ, µ ∈ R, on a, pour tout x ∈ E, par linéarité du produit scalaire
par rapport à la seconde variable :

(x|v(λy + µz)) = (u(x)|λy + µz)
= λ(u(x)|y) + µ(u(x)|z)
= λ(x|v(y)) + µ(x|v(z))

(x|v(λy + µz)) = (x|λv(y) + µv(z));
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donc (x|v(λy + µz)− (λv(y) + µv(z))) = 0, pour tout x ∈ E, d’où :

v(λy + µz) = λv(y) + µv(z).

Ainsi, v est un endomorphisme de E.
Ce qui prouve l’existence.

• Unicité : Soit v, w ∈ L(E) tels que, pour tous x, y ∈ E :

(x|v(y)) = (u(x)|y) = (x|w(y)).

Soit y ∈ E. alors pour tout x ∈ E :

(x|v(y)− w(y)) = (x|v(y))− (x|w(y)) = (u(x)|y)− (u(x)|y) = 0.

Par suite, v(y) = w(y).
Donc v = w. Ce qui prouve l’unicité.

Le lemme précédent légitime la définition suivante :

Définition 1.Définition 1.

Soit u ∈ L(E). On appelle endomorphisme adjoint - ou simplement adjoint - de u l’unique
endomorphisme de E noté u∗ tel que, pour tous x, y ∈ E :

(u(x)|y) = (x|u∗(y))

Exemple 1.Exemple 1.

— Si u est une homothéthie de E, alors u∗ = u.

En effet, pour u = λIdE avec λ ∈ R, on a, pour tous x, y ∈ E :

(u(x)|y) = (λx|y) = λ(x|y) = (x|λy) = (x|u(y)).

Par suite, u∗ = u.

— Pour E = R2 muni de son produit scalaire canonique et f ∈ L(E) tel que f : (x, y) 7→
(x+ 2y, x), on a f∗ = g : (x, y) 7→ (x+ y, 2x).

En effet, pour tous (x, y), (a, b) ∈ E :

(f(x, y)|(a, b)) = (x+ 2y)a+ xb = x(a+ b) + y.2a = ((x, y)|g(a, b))

Par suite, f∗ = g.

3. Propriétés de l’adjoint
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Proposition 2.Proposition 2. gMatrice de l’adjoint dans une base orthonormaleMatrice de l’adjoint dans une base orthonormale

Soit u, v ∈ L(E) et B une base orthonormale de E. On note A = MatB(u) et B = MatB(v).
L’endomorphisme v est l’adjoint de u i.e. v = u∗ si, et seulement si, B = tA.
En particulier, MatB(u∗) = tA.

Démonstration.

Soit u, v ∈ L(E), u∗ son adjoint, B une base orthonormale de E. On note A = (aij)1≤i,j≤n =
MatB(u) et B = (bij)1≤i,j≤n = MatB(v).

(⇒) On suppose v = u∗. Comme B est orthonormale, on a, pour tous i, j ∈ J1, nK :

bij = (u∗(ej)|ei) = (ej |u(ei)) = (u(ei)|ej) = aji.

car u∗ est l’adjoint de u.
Par suite, on a B = tA.

(⇐) On suppose B = tA. Soit x, y ∈ E. On note X = MatB(x) et Y = MatB(y). On a :

(u(x)|y) = t
(AX)Y = tX tA︸︷︷︸

=B

Y = tX(BY ) = (x|v(y))

Par suite, par unicité de l’adjoint de u, on a v = u∗.

Proposition 3.Proposition 3.

L’application u 7→ u∗ est un automorphisme involutif de L(E).

Démonstration.

Notons Ad : u 7→ u∗.
— 1ère façon : avec la définition.

L’application Ad va bien de L(E) dans lui-même. Soit u, v ∈ L(E) et λ, µ ∈ R. On a, pour
tous x, y ∈ E :

((λu+ µv)(x)|y) = λ(u(x)|y) + µ(v(x)|y)
= λ(x|u∗(y)) + µ(x|v∗(y))

((λu+ µv)(x)|y) = (x|(λu∗ + µv∗)(y)).

Donc, par unicité de l’adjoint :

Ad (λu+ µv) = (λu+ µv)
∗
= λu∗ + µv∗ = λAd(u) + µAd(v).

Par suite Ad est linéaire.
Montrons que Ad est involutive. Soit u ∈ L(E). On note v = u∗. Pour tous x, y ∈ E :

(v(x)|y) = (u∗(x)|y) = (x|u(y)),

donc v∗ = u par unicité de l’adjoint. Ainsi, Ad2(u) = Ad(v) = v∗ = u i.e. Ad est une
involution.
Ainsi, Ad est un élément inversible de l’anneau (L ((L(E)) ,+, ◦) car, étant une involution,
il est sa propre inverse ; d’où Ad est bijective et donc un automorphisme de L(E).
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Il en résulte que Ad est un automorphisme involutif de L(E).

— 2nde façon : avec la proposition précédente. Soit B une base orthonormale de E.
L’application M = MatB : L(E) → Mn(R) est un isomorphisme d’espaces vectoriels (et
même d’algèbres) et l’application T : A 7→ tA est un automorphisme involutif de Mn(R).
Or, on a :

Ad = M−1 ◦ T ◦M,

en effet, pour tout u ∈ L(E) avec A = MatB(u), on a, d’après la proposition précédente :

M−1 ◦ T ◦M(u) = M−1(T (A)) = M−1
(
tA
)
= u∗ = Ad(u).

Donc Ad : L(E) → L(E) est un isomorphisme d’espaces vectoriels comme composée
d’isomorphismes d’espces vectoriels.
De plus, comme T est involutif, on a :

Ad2 =
(
M−1 ◦ T ◦M

)
◦
(
M−1 ◦ T ◦M

)
= M−1 ◦ T 2 ◦M = M−1 ◦ T ◦M = Ad.

Il en résulte que Ad est un automorphisme involutif de L(E).‘

Proposition 4.Proposition 4.

Pour tous u, v ∈ L(E), (u ◦ v)∗ = v∗ ◦ u∗.

Correction.

Soit u, v ∈ L(E). Pour tous x, y ∈ E, on a :

(u ◦ v(x)|y) = (u(v(x))|y)
= (v(x)|u∗(y))
= (x|v∗(u∗(y)))

(u ◦ v(x)|y) = (x|v∗ ◦ u∗(y)).

Donc, par unicité de l’adjoint (u ◦ v)∗ = v∗ ◦ u∗.
Remarque : on aurait pu également utiliser une base orthonormale et utiliser la caractérisation
matricielle de l’adjoint en remarquant que, pour toutes matrices A,B, t

(AB) = tBtA.

Proposition 5.Proposition 5.

Soit u ∈ L(E). On a :
Ker(u∗) = Im(u)⊥ et Im(u∗) = Ker(u)⊥

Démonstration.

Soit u ∈ L(E). Montrons tout d’abord les inclusions suivantes :
— Montrons Ker(u∗) ⊂ Im(u)⊥. Soit x ∈ Ker(u∗). Alors, pour tout y ∈ Im(u), il existe
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x′ ∈ E tel que y = u(x′) et on a :

(x|y) = (x|u(x′)) = (u∗(x)︸ ︷︷ ︸
=0E

|x′) = 0

D’où x ∈ Im(u)⊥. Par suite, Ker(u∗) ⊂ Im(u)⊥.
— Montrons que Im(u∗) ⊂ Ker(u)⊥. Soit y ∈ Im(u∗). Alors il existe x ∈ E tel que y = u∗(x)

et on a, pour tout x′ ∈ Ker(u) :

(y|x′) = (u∗(x)|x′) = (x|u(x)︸︷︷︸
=0E

) = 0

D’où y ∈ Ker(u)⊥. Par suite, Im(u∗) ⊂ Ker(u)⊥.
Montrons les inclusions réciproques. On rappelle que si F est un sous-espace vectoriel de dimen-
sion finie de E (comme E est euclidien ici, tout sous-espace vectoriel de E est de dimension finie),
(F⊥)⊥ = F et si A,B ⊂ E tels que A ⊂ B alors B⊥ ⊂ A⊥.
Ainsi, on a, d’après les inclusions précédentes appliquées à v = (u∗)∗ = u (car la passage à
l’adjoint est involutif) :

—
Ker(u) = Ker((u∗)∗) ⊂ Im(u∗)⊥

d’où :
Ker(u)⊥ ⊃ Im(u∗).

Par suite, Im(u∗) = Ker(u)⊥.
—

Im(u) = Im((u∗)∗) ⊂ Ker(u∗)⊥

d’où :
Im(u)⊥ ⊃ Ker(u∗).

Par suite, Ker(u∗) = Im(u)⊥.

Exercice 2.Exercice 2.

Soit u ∈ L(E). Montrer (par forcément dans l’ordre indiqué) que :

rg(u∗) = rg(u) Tr(u∗) = Tr(u) det(u∗) = det(u)

et en terme de réduction :

χu∗ = χu Sp(u∗) = Sp(u) πu∗ = πu.

En déduire les liens potentiels entre diagonalisation/trigonalisation de u et u∗.
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Proposition 6.Proposition 6.

Soit u ∈ L(E) et F un sous-espace vectoriel de E. Si F est stable par u, alors F⊥ est stable par
u∗.

Démonstration.

On suppose F stable par u. Soit x ∈ F⊥. Alors, pour tout y ∈ F , u(y) ∈ F et :

(u∗(x)|y) = ( x︸︷︷︸
∈F⊥

|u(y)︸︷︷︸
∈F

) = 0

D’où u∗(x) ∈ F⊥.
Il en résulte que F⊥ est stable par u∗.
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Isométries vectorielles et matrices orthogonales
Partie BPartie B

Dans cette partie, n désigne un entier naturel et E désigne un espace euclidien de dimension n de produit
scalaire noté (·|·), de norme associée notée ‖ · ‖ et de distance associée notée d.

1. Matrices orthogonales

a. Définitions

Définition 2.Définition 2. gMatrice orthogonaleMatrice orthogonale

Soit M ∈ Mn(R). On dit M est une matrice orthogonale si tMM = In.
On appelle groupe orthogonal d’ordre n et on note On(R) (ou encore O(n)) l’ensemble des
matrices orthogonales de Mn(R) i.e.

On(R) = {M ∈ Mn(R) | tMM = In}.

Définition-Proposition 3.Définition-Proposition 3.

Soit M ∈ Mn(R). Si M ∈ On(R) alors det(M) = ±1 ;
— si det(M) = 1, on dit M est une matrice orthogonale directe (ou positive) ;
— si det(M) = −1, on dit M est une matrice orthogonale indirecte (ou négative) ;

On appelle groupe spécial orthogonal d’ordre n et on note SOn(R) (ou encore SO(n))
l’ensemble des matrices orthogonales directes i.e.

SOn(R) = {M ∈ On(R) | det(M) = 1}.

Définition 4.Définition 4. gMatrices orthogonalement semblablesMatrices orthogonalement semblables

Soit A,B ∈ Mn(R). On dit que A et B sont orthogonalement semblables s’il existe P ∈
On(R) telle que B = PAtP .

b. Propriétés des matrices orthogonales

On justifie ici la terminologie de ”groupe” (spécial) orthogonal :

Proposition 7.Proposition 7.

Le groupe orthogonal On(R) est un sous-groupe de GLn(R) et le groupe spécial orthogonal
SOn(R) est un sous-groupe de On(R).
En particulier, si M ∈ On(R), on a M−1 = tM .
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Proposition 8.Proposition 8.

Soit M ∈ Mn(R). On note C1, ..., Cn ses colonnes.
La matrice M est une matrice orthogonale si, et seulement si, la famille (C1, ..., Cn) est une base
orthonormale de Mn,1(R) muni de son produit scalaire canonique.
Le même résultat est valable pour les lignes de M .

2. Orientation d’un espace vectoriel réel de dimension finie
On rappelle que dans cette partie, E est en particulier un espace vectoriel réel de dimension finie.

Définition 5.Définition 5. gOrientationOrientation

Soit B et B′ deux bases de E. On dit que B et B′ définissent la même orientation de E si
det(P ) > 0 où P est la matrice de passage de B vers B′.
Orienter l’espace E revient à se fixer une base B de référence. Ce choix étant fait, on appelle
bases directes, les bases qui définissent la même orientation que B et bases indirectes, les
autres.

Exemple 2.Exemple 2.

On oriente R3 grâce à sa base canonique B = (e1, e2, e3). Alors la base (e2, e3, e1) est directe et
la base (e1, e3, e2) est indirecte.

Exercice 3.Exercice 3.

Montrer que le procédé d’orthonormalisation de Gram-Schmidt ne change pas l’orientation d’une
base.

Proposition 9.Proposition 9.

Soit B et B′ deux bases orthonormales de E et P la matrice de passage de B vers B′. Alors
P ∈ On(R) et de plus, P ∈ SOn(R) si, et seulement si, B,B′ définissent la même orientation de
E.

Proposition 10.Proposition 10.

On suppose que E est orienté. Si B et B′ deux bases orthonormales directes de E, alors detB =
detB′ .

3. Isométries vectorielles

a. Définitions et premières propriétés
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Définition 6.Définition 6. gIsométrie vectorielleIsométrie vectorielle

Soit u ∈ L(E). On dit que u est une isométrie vectorielle (ou également un automorphisme
orthogonal) si, pour tout x ∈ E,

‖u(x)‖ = ‖x‖.

On note O(E) l’ensemble des isométries vectorielles de E.

Proposition 11.Proposition 11.

Soit u ∈ L(E). Si u ∈ O(E) alors u est un automorphisme de E.

Démonstration.

On suppose u ∈ O(E). Alors Ker(u) = {0E} ; en effet, si x ∈ Ker(u), alors ‖x‖ = ‖u(x)‖ =
‖0E‖ = 0, donc par séparation de la norme, x = 0E . Par suite, u est un endomorphisme injectif
en dimension finie : il est donc bijectif ; ainsi, u est un automorphisme de E.

Proposition 12.Proposition 12.

Soit u ∈ O(E). On a Sp(u) ⊂ {−1, 1}.

Démonstration.

Soit λ ∈ R. Si λ ∈ Sp(u), alors, pour tout vecteur propre unitaire x associé à λ, on a :

1 = ‖x‖ = ‖u(x)‖ = ‖λx‖ = |λ|‖x‖.

D’où λ = ±1.
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