Corrigé de la feuille d'exercices n°11

1. Somme directe de plusieurs sous-espaces

Exercice 1.

Soit $E = \mathbb{R}^4$. On considère (u_1, u_2, u_3, u_4) une famille libre de E et on pose

$$F = \text{vect}(u_1 + u_2, u_3), \ G = \text{vect}(u_1 + u_3, u_4), \ H = \text{vect}(u_1 + u_4, u_2).$$

Démontrer que $F \cap G = \{0\}$, que $F \cap H = \{0\}$ et que $G \cap H = \{0\}$. La somme F + G + H est-elle directe?

Correction.

On va simplement démontrer que $F \cap G = \{0\}$, les deux autres égalités se prouvant de façon tout à fait similaire. Soit $u \in F \cap G$. Alors il existe des scalaires a, b, c, d tels que

$$u = a(u_1 + u_2) + bu_3 = c(u_1 + u_3) + du_4 \implies (a - c)u_1 + au_2 + (b - c)u_3 - du_4 = 0.$$

La famille (u_1, u_2, u_3, u_4) étant libre, on en déduit que

$$a - c = a = b - c = -d = 0$$
,

d'où l'on déduit successivement a=d=0, puis c=0, b=0. Ainsi, u=0. On va prouver que la somme F+G+H n'est pas directe en trouvant un vecteur qui admet deux décompositions différentes dans F+G+H. Par exemple,

$$u_1 = -u_3 + (u_1 + u_3) + 0 \in F + G + H$$

= $(u_1 + u_2) + 0 + (-u_2) \in F + G + H.$

La somme n'est pas directe!

Exercice 2.

On considère le \mathbb{R} -espace vectoriel \mathbb{R}^4 muni de sa base canonique (e_1, e_2, e_3, e_4) . Soit

$$E = \{(x, y, z, t) \in \mathbb{R}^4: \ 2x + y + z - t = 0 \ \text{et} \ x + y + z = 0\}$$

et F = vect(v) où $v = e_1 + e_3$.

- 1. On pose $G_1 = \text{vect}(w_1)$ où $w_1 = e_1 + e_2$. La somme directe $E + F + G_1$ est-elle directe? Préciser la dimension de $E + F + G_1$.
- 2. On pose $G_2 = \text{vect}(w_2)$ où $w_2 = e_1 + e_2 + e_3$. La somme directe $E + F + G_2$ est-elle directe? Préciser la dimension de $E + F + G_2$.

Correction.

On va utiliser le résultat suivant : si \mathcal{B}_E est une base de E, \mathcal{B}_F est une base de F et \mathcal{B}_G est une base de G, la somme E + F + G est directe si et seulement si $\mathcal{B}_E \cup \mathcal{B}_F \cup \mathcal{B}_G$ est une famille libre. Ceci nous incite à chercher une base de E. Pour cela, on remarque que

$$(x,y,z,t) \in E \iff \begin{cases} x = -y-z \\ y = y \\ z = z \\ t = -y-z. \end{cases}$$

Ainsi, si on pose $u_1 = (-1, 1, 0, -1)$ et $u_2 = (-1, 0, 1, -1)$, la famille (u_1, u_2) est une base de E.

1. Voyons si la famille (v, w_1, u_1, u_2) est une famille libre. Pour cela, on résout le système $av + bw_1 + cu_2 + du_2 = 0$, d'inconnues a, b, c, d. La résolution de ce système, en utilisant la matrice augmentée, donne

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & -1 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

La famille est donc liée. La somme n'est pas directe! De plus, on vérifie que (v, w_1, u_1) est libre, en reproduisant le calcul précédent (sauf la dernière ligne). C'est bien que (v, w_1, u_1) est une base de $E + F + G_1$ qui est de dimension 3.

2. On reprend la même méthode, mais en remplaçant w_1 par w_2 .

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & -1 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

La famille est libre : E, F et G_2 sont en somme directe, et la dimension de $E+F+G_2$ est égale à 4.

2. Sous-espaces stables

Exercice 3.

Soit E un \mathbb{K} -espace vectoriel, et soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel F de E est stable par u si $u(x) \in F$ pour tout $x \in F$. Soit p un projecteur de E. Démontrer que u commute avec p si et seulement si $\mathrm{Im}(p)$ et $\mathrm{ker}(p)$ sont stables par u.

Correction.

Supposons d'abord que $u \circ p = p \circ u$, et prouvons que $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par u. En effet, si p(x) = 0, alors $p \circ u(x) = u \circ p(x) = 0$ et donc $u(x) \in \ker(p)$. De plus, si $x \in \operatorname{Im}(p)$, alors x = p(y) et $u(x) = u \circ p(y) = p(u(y)) \in \operatorname{Im}(p)$. Remarquons que cette implication n'utilise pas du tout le fait que p est un projecteur. Réciproquement, supposons que $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par u, et prouvons que u et p commutent. Prenons $x \in E$. Il se décompose de manière unique en x = y + z, avec $y \in \ker(p)$ et $z \in \operatorname{Im}(p)$. En particulier, p(y) = 0 et p(z) = z. Mais alors, on a d'une part

$$u(p(x)) = u(z)$$

et d'autre part, puisque $u(y) \in \ker(p)$ et $u(z) \in \operatorname{Im}(p)$ par hypothèse :

$$p(u(x)) = p(u(y)) + p(u(z)) = u(z).$$

Ainsi, u(p(x)) = p(u(x)) et les deux endomorphismes p et u commutent.

3. Matrices semblables

Exercice 4.

Montrer que les matrices A, B, C et D suivantes sont semblables :

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Correction.

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ est A. On a donc $u(e_1) = u(e_2) = 0$ et $u(e_3) = e_2$. Alors,

- 1. Si on pose $\mathcal{B}_1 = (e_1, e_3, e_2)$, alors la matrice de u dans \mathcal{B}_1 est B.
- 2. Si on pose $\mathcal{B}_2 = (e_2, e_3, e_1)$, alors la matrice de u dans \mathcal{B}_2 est C.
- 3. Si on pose $\mathcal{B}_3 = (e_3, \frac{1}{4}e_2, e_1)$ alors la matrice de u dans \mathcal{B}_3 est D.

Exercice 5.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r.

- 1. Démontrer que A est semblable à une matrice par blocs $\begin{pmatrix} B & 0 \\ C & 0 \end{pmatrix}$ avec $B \in \mathcal{M}_r(\mathbb{K})$ et $C \in \mathcal{M}_{n-r,r}(\mathbb{K})$.
- 2. On suppose de plus que Im(A) et $\ker(A)$ sont supplémentaires. Démontrer que l'on peut demander C=0. Que dire de B?

Correction.

On notera, pour éviter toute confusion, u et non A l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est A.

- 1. Puisque A est de rang r, $\ker(u)$ est de dimension n-r d'après le théorème du rang. Soit S un supplémentaire de $\ker(u)$, de dimension r, et considérons (e_1, \ldots, e_r) une base de S, (e_{r+1}, \ldots, e_n) une base de $\ker(u)$, de sorte que (e_1, \ldots, e_n) est une base de \mathbb{K}^n . Alors la matrice de u dans la base (e_1, \ldots, e_n) a bien la forme voulue.
- 2. On reprend la même démonstration, mais cette fois on choisit comme supplémentaire de $\ker(u)$ le sous-espace vectoriel $\operatorname{Im}(u)$. On a alors bien C=0, et puisque le rang de A vaut r, il en est de même du rang de B qui est donc inversible.

Exercice 6.

Soit
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. Le but de l'exercice est de démontrer que M

et D sont semblables. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est M.

- 1. Démontrer qu'il existe $u_1 \in \mathbb{R}^3$ tel que $\text{vect}(u_1) = \text{ker}(f Id)$. De même, prouver l'existence de $u_2, u_{-4} \in \mathbb{R}^3$ tels que $\text{vect}(u_2) = \text{ker}(f 2Id)$ et $\text{Vect}(u_{-4}) = \text{ker}(f + 4Id)$.
- 2. Démontrer que (u_1, u_2, u_{-4}) est une base de \mathbb{R}^3 .
- 3. Conclure.

Correction.

1. Soit u(x, y, z). Alors

$$u \in \ker(f - Id) \iff (f - Id)(u) = 0$$

$$\iff \begin{cases} -x + 2y - z &= 0 \\ 3x - 3y &= 0 \\ -2x + 2y &= 0 \end{cases}$$

$$\iff \begin{cases} x &= x \\ y &= y \\ z &= z \end{cases}$$

Si on pose $u_1 = (1, 1, 1)$, alors on vient de prouver que $\ker(f - Id) = u_1$. De même, en résolvant l'équation f(u) - 2u = 0, puis l'équation f(u) + 4u = 0, on trouve respectivement

4

 $\operatorname{vect}(u_2) = \ker(f - 2Id)$ et $\operatorname{Vect}(u_{-4}) = \ker(f + 4Id)$ avec $u_2 = (4, 3, -2)$ et $u_{-4} = (2, -3, 2)$.

- 2. Puisqu'il s'agit d'une famille de trois vecteurs de \mathbb{R}^3 , il suffit de vérifier que c'est une famille libre, ce qui est laissé au lecteur.
- 3. Notons B la matrice de f dans la base (u_1, u_2, u_{-4}) . Puisque $f(u_1) = u_1$, que $f(u_2) = 2u_2$ et $f(u_{-4}) = -4u_{-4}$, on a B = D. Ainsi, M et D représentent la même matrice dans des bases différentes. Elles sont donc semblables.

Exercice 7.

- 1. Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que f est une homothétie si et seulement si, pour tout $x \in E$, la famille (x, f(x)) est liée.
- 2. Soit $M \in M_n(\mathbb{K})$ de trace nulle. Montrer que M est semblable à une matrice n'ayant que des zéros sur la diagonale.

Correction.

1. Si f est une homothétie, alors (x, f(x)) est bien toujours liée. Réciproquement, l'hypothèse nous dit, que pour tout x non-nul, il existe un scalaire λ_x tel que $f(x) = \lambda_x x$. On doit prouver qu'il existe un scalaire λ tel que $\lambda_x = \lambda$ pour tout x de E, ou encore que $\lambda_x = \lambda_y$ quels que soient x et y non-nuls. Si la famille (x,y) est liée, c'est clair, car $y = \mu x$ et $\mu \lambda_y x = \lambda_y y = f(y) = \mu f(x) = \mu \lambda_x x$ et on peut simplifier par $\mu x \neq 0$. Si la famille (x,y) est libre, calculons f(x+y). D'une part,

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y,$$

d'autre part,

$$f(x+y) = f(x) + f(y) = \lambda_x x + \lambda_y y.$$

Puisque la famille (x, y) est libre, toute décomposition d'un vecteur à l'aide de combinaison linéaire de ces vecteurs est unique. On obtient donc $\lambda_x = \lambda_y = \lambda_{x+y}$, ce qui est le résultat voulu.

2. On va raisonner par récurrence sur n, le résultat étant vrai si n=1. Soit f l'application linéaire associée à M dans la base canonique de \mathbb{K}^n . Si f est une homothétie, alors M est diagonale et comme sa trace est nulle, c'est la matrice nulle. Sinon, soit $x \in \mathbb{K}^n$ tel que (x, f(x)) est libre. Alors on peut compléter cette famille en une base $(x, f(x), e_3, \ldots, e_n)$. Dans cette base, la matrice de f est

$$N = \begin{pmatrix} 0 & * & \dots & * \\ \hline 1 & & & \\ 0 & & N' & \\ \vdots & & & \end{pmatrix}.$$

Autrement dit, M est semblable à N. Puisque N est de trace nulle, N' est de trace nulle. On peut lui appliquer l'hypothèse de récurrence : il existe $Q \in GL_{n-1}(\mathbb{K})$ tel que $Q^{-1}N'Q$

soit une matrice n'ayant que des zéros sur la diagonale. Posons alors

$$P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ 0 & & Q & \\ \vdots & & & \end{pmatrix}.$$

Alors, P est inversible, et on vérifie aisément que $P^{-1}NP$ est une matrice n'ayant que des zéros sur la diagonale. Ainsi, N, donc M, est semblable à une telle matrice.

4. Eléments propres et polynôme caractéristique

Exercice 8.

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ et D l'endomorphisme de E qui à f associe f'. Déterminer les valeurs propres de D et les sous-espaces propres associés.

Correction.

f est un vecteur propre de D associé à la valeur propre $\lambda \in \mathbb{R}$ si et et seulement si $f' = \lambda f$. f est donc un multiple de la fonction $x \mapsto \exp(\lambda x)$, et la réciproque est vraie. Autrement dit, tous les réels sont des valeurs propres pour D, et $\exp(\lambda x)$ est une base de l'espace propre associé à λ .

Exercice 9.

Soit $E = \mathbb{C}^{\mathbb{N}}$ l'espace des suites à coefficients complexes, et ϕ l'endomorphisme de E qui à une suite (u_n) associe la suite (v_n) définie par $v_0 = u_0$ et pour tout $n \geq 1$,

$$v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer les valeurs propres et les vecteurs propres de ϕ .

Correction.

Soit (u_n) un vecteur propre associé à la valeur propre λ . Alors on a $u_0 = \lambda u_0$ et pour tout $n \ge 1$, on a

$$\frac{u_n + u_{n-1}}{2} = \lambda u_n \iff (1 - 2\lambda)u_n = -u_{n-1}.$$

On distingue alors trois cas:

- Si $\lambda = 1$, alors on a $u_0 = u_0$ (qui n'implique plus rien sur u_0), puis pour tout $n \ge 1$, on a $u_n = u_{n-1}$. Réciproquement, toute suite constante est bien vecteur propre de ϕ pour la valeur propre 1. On en déduit que 1 est une valeur propre de ϕ dont l'espace propre associé est constitué par les suites constantes.
- Si $\lambda = 1/2$, alors le système devient $u_0 = 0$ et pour tout $n \ge 1$, $u_{n-1} = 0$ ce qui implique que (u_n) est la suite nulle et donc 1/2 n'est pas valeur propre de ϕ .

— Dans tous les autres cas, le système devient $u_0 = 0$ et pour tout $n \ge 1$,

$$u_n = \frac{1}{2\lambda - 1} u_{n-1}.$$

Ainsi, la suite (u_n) est là-encore la suite nulle, et λ n'est pas valeur propre. En conclusion, la seule valeur propre est 1, et les seuls vecteurs propres sont les suites constantes.

Exercice 10.

Déterminer les éléments propres des matrices suivantes :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

Correction.

Procédons d'abord avec A. Son polynôme caractéristique vaut

$$\chi_A(X) = (X-1)(X-2)(X+4).$$

Il suffit de chercher pour chaque valeur propre un vecteur propre associé. D'abord pour 1, on résoud AX=X, c'est-à-dire le système :

$$\begin{cases}
-x + 2y - z &= 0 \\
3x - 3y &= 0 \\
-2x + 2y &= 0
\end{cases}$$

Ce système est équivalent à x=y=z et un vecteur propre est donc donnée par $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. On fait

de même pour 2 et -4, et on trouve respectivement $\begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$. La matrice A est donc semblable à diag(1,2,-4), la matrice de passage étant

$$P = \left(\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array}\right).$$

Poursuivons avec B dont on calcule le polynôme caractéristique :

$$P_B(X) = X^3 - 5X^2 + 8X - 4.$$

1 est racine évidente, on factorise par X-1 et finalement on trouve

$$\chi_B(X) = (X-1)(X-2)^2.$$

On cherche le sous-espace propre associé à 1 en résolvant BX = X, c'est-à-dire le système :

$$\begin{cases}
-x + 3y + 2z &= 0 \\
-2x + 4y + 2z &= 0 \\
2x - 3y - z &= 0
\end{cases}$$

7

Ce système est équivalent à x=y=-z. Ainsi, le sous-espace propre associé à 1 est de dimension 1, engendré par le vecteur propre $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. L'étude du sous-espace propre associé à 2 conduit au système :

$$\begin{cases}
-2x + 3y + 2z &= 0 \\
-2x + 3y + 2z &= 0 \\
2x - 3y - 2z &= 0
\end{cases}$$

Ces trois équations se ramènent à 2x - 3y - 2z = 0, qui est l'équation d'un plan de \mathbb{R}^3 . Le sous-espace propre associé à 2 est donc de dimension 2, et une base est donnée par les vecteurs

$$\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
 et $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. B est donc semblable à la matrice diag $(1, 2, 2)$, la matrice de passage P étant donnée par

$$P = \left(\begin{array}{rrr} 1 & 3 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{array}\right).$$

Le polynôme caractéristique de C est $\chi_C(X) = -(1-X)^2(2-X)$. On procède exactement comme précédemment, et on trouve que (u_1, u_2) forme une base de l'espace propre associé à la valeur propre 1, avec $u_1 = (1, 1, 0)$ et $u_2 = (0, 1, 1)$ et que (u_3) forme une base de l'espace propre associé à la valeur propre 2, avec $u_3 = (0, 0, 1)$. Ainsi, C s'écrit $C = PDP^{-1}$ avec D la matrice diagonale

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

 et

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Exercice 11.

Soit $E = \mathbb{R}_n[X]$ et soit ϕ l'endomorphisme de E défini par $\phi(P) = P - (X+1)P'$. Donner les éléments propres de ϕ .

Correction.

On va écrire la matrice de ϕ dans la base canonique de E. Remarquons que pour tout $k=0,\ldots,n,$ on a

$$\phi(X^k) = (-k+1)X^k - kX^{k-1}.$$

Ainsi, la matrice de ϕ dans la base $(1, X, \dots, X^n)$ est triangulaire supérieure, et ses coefficients diagonaux sont $1, 0, \dots, -n+1$. Les valeurs propres d'une matrice triangulaire supérieure étant exactement les valeurs situées sur la diagonale, on en déduit que ϕ est diagonalisable, ses valeurs propres étant les $(n+1) = \dim(E)$ réels distincts $1, 0, -1, \dots, -n+1$.

Exercice 12.

Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto {}^tM$. Déterminer les valeurs propres de ϕ .

Correction.

Soit $\lambda \in \mathbb{R}$ et $M \in \mathcal{M}_n(\mathbb{R})$, $M \neq 0$ tel que $\phi(M) = \lambda M$. Les termes diagonaux donnent $m_{i,i} = \lambda m_{i,i}$ pour $1 \leq i \leq n$, les termes non-diagonaux donnent $m_{i,j} = \lambda m_{j,i}$, pour $1 \leq j < i \leq n$. On en déduit que $m_{i,j} = \lambda^2 m_{i,j}$ pour tous les couples (i,j). Ceci entraı̂ne que $\lambda = \pm 1$. On distingue plusieurs cas.

- Si $\lambda = -1$, tous les coefficients sur la diagonale sont égaux à 0 et on a $m_{i,j} = -m_{j,i}$. On en déduit que -1 est une valeur propre de ϕ , les vecteurs propres appartenant à $\text{vect}(f_{i,j}; 1 \le j < i \le n)$ avec $f_{i,j} = E_{i,j} E_{j,i}$. L'espace propre associé est donc de dimension n(n-1)/2.
- Si $\lambda = 1$, on n'a plus de contraintes sur les éléments diagonaux, et $m_{i,j} = m_{j,i}$ pour les éléments non-diagonaux. On en déduit que 1 est valeur propre, les vecteurs propres étant éléments de vect $(E_{i,i}, g_{i,j}; 1 \le j < i \le n)$, avec $g_{i,j} = E_{i,j} + E_{j,i}$. L'espace propre associé est donc de dimension n + n(n-1)/2 = n(n+1)/2.

Exercice 13.

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si ses coefficients sont des réels positifs ou nuls et si la somme des coefficients de chacune de ses lignes est égale à 1.

- 1. Démontrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $|\lambda| \leq 1$.
- 2. Démontrer que 1 est valeur propre et donner un vecteur propre associé.

Correction

1. Supposons que $\lambda \in \mathbb{C}$ soit une valeur propre de A et soit Z un vecteur propre non-nul associé. Soit $i \in \{1, \ldots, n\}$ tel que $|z_i| = \max_{j=1,\ldots,n} |z_j|$. La i-ème coordonnée de AZ est $\sum_{j=1}^n a_{i,j} z_j$ et ceci doit être égal à λz_i . Prenant les valeurs absolues et utilisant l'inégalité triangulaire, on obtient

$$|\lambda||z_i| \le \sum_{j=1}^n a_{i,j}|z_j| \le \sum_{j=1}^n a_{i,j}|z_i| \le |z_i|$$

où on a utilisé aussi que $a_{i,j} \geq 0$ et que $\sum_{j=1}^n a_{i,j} = 1$. On a donc obtenu $|\lambda||z_i| \leq |z_i|$. Comme $|z_i| \neq 0$ (sinon Z serait le vecteur nul), ceci entraı̂ne encore que $|\lambda| \leq 1$.

2. Il suffit de choisir $Z = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ pour remarquer que AZ = Z. Ainsi, Z est un vecteur propre pour la valeur propre 1.

Exercice 14.

- 1. Soient $M, N \in \mathcal{M}_n(\mathbb{C})$. Démontrer que MN est inversible si et seulement si M et N sont inversibles.
- 2. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Démontrer que

$$\chi_A(B) \in GL_n(\mathbb{C}) \iff \operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \varnothing.$$

Correction

1. On a

$$MN \in GL_n(\mathbb{C}) \iff \det(MN) \neq 0$$

 $\iff \det(M) \times \det(N) \neq 0$
 $\iff \det(M) \neq 0 \text{ et } \det(N) \neq 0$
 $\iff M \in GL_n(\mathbb{C}) \text{ et } N \in GL_n(\mathbb{C}).$

2. Soient $\lambda_1, \dots, \lambda_n$ les valeurs propres de A, répétées autant de fois que leur multiplicité, de sorte que $\chi_A(X) = \prod_{i=1}^n (X - \lambda_i)$. On a donc

$$\chi_A(B) = \prod_{i=1}^n (B - \lambda_i I_n).$$

D'après la première question (et une récurrence immédiate), $\chi_A(B)$ est inversible si et seulement, pour tout $i=1,\ldots,n,\ B-\lambda_i I_n$ est inversible, c'est-à-dire si et seulement si, pour tout $i=1,\ldots,n,\ \lambda_i\notin\operatorname{Sp}(B)$. Ceci revient à dire que $\operatorname{Sp}(A)\cap\operatorname{Sp}(B)=\varnothing$.

Exercice 15.

Soit $A \in GL_n(\mathbb{C})$. On note P le polynôme caractéristique de A et Q celui de A^{-1} . Quelle relation a-t-on pour tout $\lambda \in \mathbb{C}^*$ entre $Q(\lambda)$ et $P(\lambda^{-1})$?

Correction.

On écrit, pour $\lambda \neq 0$,

$$Q(\lambda) = \det(\lambda I_n - A^{-1})$$

$$= \det(A^{-1}(\lambda A - I_n))$$

$$= \det(A^{-1}) \det(\lambda A - I_n)$$

$$= \det(A^{-1}) \det(-\lambda(\lambda^{-1}I_n - A))$$

$$= \det(A^{-1})(-\lambda)^n \det(\lambda^{-1}I_n - A)$$

$$= \frac{(-\lambda)^n}{\det(A)} P(\lambda^{-1}).$$

Exercice 16.

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On souhaite prouver que $\chi_{AB} = \chi_{BA}$.

- 1. Démontrer le résultat si A ou B est inversible.
- 2. Dans le cas général, on considère les matrices de $\mathcal{M}_{2n}(\mathbb{K})$

$$M = \left(\begin{array}{cc} BA & -B \\ 0 & 0 \end{array} \right), \ N = \left(\begin{array}{cc} 0 & -B \\ 0 & AB \end{array} \right), \ P = \left(\begin{array}{cc} I_n & 0 \\ A & I_n \end{array} \right).$$

Vérifier que PN = MP et conclure.

Correction.

1. Si par exemple A est inversible, AB et BA sont semblables. En effet, on peut écrire

$$A^{-1}(AB)A = BA.$$

2. Il est clair que

$$PN = MP = \left(\begin{array}{cc} 0 & -B \\ 0 & 0 \end{array} \right).$$

De plus, P est une matrice triangulaire inférieure avec des 1 sur sa diagonale, donc P est inversible. Il vient que M et N sont semblables donc ont le même polynôme caractéristique. Mais le calcul de χ_M fait intervenir le déterminant d'une matrice triangulaire supérieure par blocs. On peut calculer ce déterminant par blocs et on trouve que

$$\chi_M(X) = X^k \chi_{BA}(X).$$

De même, on a aussi

$$\chi_N(X) = X^k \chi_{AB}(X).$$

Puisque $\chi_M = \chi_N$, on en déduit que $\chi_{AB} = \chi_{BA}$.