Feuille d'exercices n°15

1. Suites et séries de fonctions

Exercice 1.

Étudier la convergence simple et la convergence uniforme des suites de fonctions (f_n) suivantes :

- 1. $f_n(x) = e^{-nx} \sin(2nx)$ sur \mathbb{R}^+ puis sur $[a, +\infty[$, avec a > 0.
- 2. $f_n(x) = \frac{1}{(1+x^2)^n}$ sur \mathbb{R} , puis sur $[a, +\infty[$ avec a > 0.

Exercice 2.

On pose $f_n: x \mapsto ne^{-n^2x^2}$. Étudier la convergence simple de (f_n) sur \mathbb{R} . Montrer la convergence uniforme sur $[a, +\infty[$, avec a > 0. Étudier la convergence uniforme sur $]0, +\infty[$.

Exercice 3.

Soit (f_n) une suite de fonctions décroissantes définies sur [0,1] telle que (f_n) converge simplement vers la fonction nulle. Montrer que la convergence est en fait uniforme.

Exercice 4.

Pour $n \ge 1$ et $x \in \mathbb{R}$, on pose $u_n(x) = nx^2 e^{-x\sqrt{n}}$.

- 1. Démontrer que la série $\sum_n u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Démontrer que la convergence n'est pas normale sur \mathbb{R}_+ .
- 3. Démontrer que la convergence est normale sur tout intervalle $[a, +\infty[$ avec a>0.
- 4. La convergence est-elle uniforme sur \mathbb{R}_+ ?

Exercice 5.

Soit $u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)}\right)$ défini pour $x \ge 0$ et $n \ge 1$.

- 1. Montrer que la série $\sum_{n\geq 1} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n\geq 1} u_n$ converge uniformément sur \mathbb{R}_+ .
- 3. La convergence est-elle normale sur \mathbb{R}_+ ?

Exercice 6.

Pour $x \in I = [0,1]$, $a \in \mathbb{R}$ et $n \ge 1$, on pose $u_n(x) = n^a x^n (1-x)$.

- 1. Étudier la convergence simple sur I de la série de terme général u_n . On notera dans la suite S la somme de la série.
- 2. Étudier la convergence normale sur I de la série de terme général u_n .
- 3. On suppose dans cette question que a=0. Calculer S sur [0,1[. En déduire que la convergence n'est pas uniforme sur [0,1].
- 4. On suppose a>0. Démontrer que la convergence n'est pas uniforme sur I.

Exercice 7.

Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge uniformémement sur tout intervalle [0, A], avec A > 0.
- 3. Vérifier que, pour tout $n\in\mathbb{N},\,\sum_{k=n+1}^{2n}\frac{n}{n^2+k^2}\geq\frac{1}{5}.$
- 4. En déduire que la série $\sum_{n\geq 1} u_n$ ne converge pas uniformément sur \mathbb{R}_+ .
- 5. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge uniformément sur \mathbb{R}_+ .
- 6. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge normalement sur tout intervalle [0, A], avec A > 0.
- 7. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ ne converge pas normalement sur \mathbb{R}_+ .

Exercice 8.

On considère la série de fonctions $\sum_{n>2} u_n$, avec $u_n(x) = \frac{xe^{-nx}}{\ln n}$.

- 1. Démontrer que $\sum_{n\geq 2} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Démontrer que la convergence n'est pas normale sur \mathbb{R}_+ .
- 3. Pour $x \in \mathbb{R}_+$, on pose $R_n(x) = \sum_{k > n+1} u_k(x)$. Démontrer que, pour tout x > 0,

$$0 \le R_n(x) \le \frac{xe^{-x}}{\ln(n+1)(1-e^{-x})},$$

et en déduire que la série converge uniformément sur \mathbb{R}_+ .

Exercice 9.

On considère la série de fonctions $\sum_{n\geq 2} u_n$, avec $u_n(x) = \frac{xe^{-nx}}{\ln n}$.

- 1. Démontrer que $\sum_{n\geq 2} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Démontrer que la convergence n'est pas normale sur \mathbb{R}_+ .

3. Pour $x \in \mathbb{R}_+$, on pose $R_n(x) = \sum_{k \geq n+1} u_k(x)$. Démontrer que, pour tout x > 0,

$$0 \le R_n(x) \le \frac{xe^{-x}}{\ln(n+1)(1-e^{-x})},$$

et en déduire que la série converge uniformément sur \mathbb{R}_+ .

Exercice 10.

Soit $g:[0,+\infty[\to\mathbb{R}$ une fonction continue et bornée telle que g(0)=0. On considère la suite de fonctions définie sur $[0,+\infty[$ par $f_n(x)=g(x)e^{-nx}$.

- 1. (a) Étudier la convergence simple de la suite.
 - (b) Montrer que la suite converge uniformément sur tout intervalle $[a, +\infty[$, avec a > 0.
 - (c) On fixe $\varepsilon > 0$. Montrer que l'on peut choisir a > 0 tel que $|f_n(x)| \le \varepsilon$ pour tout $x \in [0, a]$ et pour tout $n \ge 1$. En déduire que la suite converge uniformément sur $[0, +\infty[$.
- 2. On considère la série de fonctions $\sum_{n\geq 0} g(x)e^{-nx}$.
 - (a) Démontrer qu'elle converge simplement sur $[0, +\infty[$ et normalement sur tout intervalle $[a, +\infty[$ avec a > 0.
 - (b) Démontrer l'équivalence entre les deux propositions suivantes :
 - i) la courbe représentative de g est tangente à l'axe des abscisses à l'origine ;
 - ii) la série de fonctions $\sum_{n>0} g(x)e^{-nx}$ converge uniformément sur $[0,+\infty[$.

Exercice 11.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, et soit a < b deux réels. Pour $x \in [a, b]$, on pose

$$f_n(x) = \sum_{i=0}^{n-1} \frac{1}{n} f\left(x + \frac{i}{n}\right).$$

- 1. Étudier la convergence simple de la suite (f_n) sur [a,b].
- 2. Démontrer que la suite (f_n) converge uniformément sur [a, b].

Exercice 12.

Soient I et J deux intervalles et (g_n) une suite de fonctions de I dans J qui converge uniformément sur I vers une fonction g. Soit $f \in C^0(J,\mathbb{R})$ et (h_n) la suite définie par $h_n = f \circ g_n$.

- 1. Montrer que si J est un segment, alors la suite (h_n) converge uniformément.
- 2. Que se passe-t-il si on ne suppose plus que J est un segment?