Corrigé de la feuille d'exercices n°4

Exercices obligatoires: 2; 6; 8; 9; 10; 12; 13

Exercices en groupes:

- exo n°1 Groupe 1 : Maxence; Daniel; Tredy; Constant;
- exo n°4 Groupe 2 : Adrien; Thibault; Camil; Ernest;
- exo n°5 Groupe 3 : Lucas; Clément; Rayan; Malarvijy;
- exo n°11 Groupe 4 : Raphaël; Michèle; Ingrid; Sébastien;
- exo n°15 Groupe 5 : Luca; Ambroise; Augustin; Maxime;

1. Exercices basiques

a. Boules / Distances

Exercice 1.

On considère l'espace vectoriel normé $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$.

- 1. Déterminer la distance de la suite u constante en 1 au sous-espace vectoriel $c_0(\mathbb{R})$ des suites à valeurs réelles convergeant vers 0.
- 2. Déterminer la distance de la suite $v=((-1)^n)_{n\in\mathbb{N}}$ au sous-espace vectoriel \mathcal{C} des suites à valeurs réelles convergentes.

Correction.

On note 0 la suite constante en 0.

— On a clairement $d(u,c_0(\mathbb{R})) \leq d(u,0) = 1.$ Montrons l'inégalité réciproque.

Soit $x = (x_n) \in c_0(\mathbb{R})$. On a, pour tout $n \in \mathbb{N}$,

$$|x_n - 1| \le ||x - u||_{\infty}.$$

En passant à la limite quand $n \to +\infty$, on obtient :

$$1 < d(u, x)$$
.

Donc $d(u, c_0(\mathbb{R})) \geq 1$.

Il en résulte que $d(u, c_0(\mathbb{R})) = 1$.

— On a clairement $d(v, \mathcal{C}) \leq d(v, 0) = 1$. Montrons l'inégalité réciproque.

Soit $x = (x_n) \in \mathcal{C}$ et l sa limite. On a, pour tout entier pair n = 2k,

$$||x - v||_{\infty} \ge |x_{2k} - v_{2k}| = |x_{2k} - 1|,$$

et pour tout entier impair n = 2k + 1,

$$||x - v||_{\infty} \ge |x_{2k+1} - v_{2k+1}| = |x_{2k+1} + 1|.$$

En passant à la limite quand $n \to +\infty$, on obtient :

$$|l-1| \le d(v,x)$$
 et $|l+1| \le d(v,x)$.

Par suite,

$$1 = \left| \frac{1}{2}(1-l) + \frac{1}{2}(1+l) \right| \le \frac{1}{2}|1-l| + \frac{1}{2}|1+l| \le d(v,x).$$

Donc $d(v, \mathcal{C}) \geq 1$.

Il en résulte que $d(v, \mathcal{C}) = 1$.

Exercice 2.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $x, y \in E$. Démontrer que $x + B_f(y, r) = B_f(x + y, r)$. Remarque : $x + B_f(y, r)$ est l'ensemble $\{x + z \mid z \in B_f(y, r)\}$.

Correction

On procède par double inclusion.

$$-x + B_f(y,r) \subset B_f(x+y,r).$$

Soit $u \in x + B_f(y, r)$. Alors il existe $z \in B_f(y, r)$ tel que u = x + z. On a :

$$d(u, x + y) = ||(x + y) - (x + z)|| = ||y - z|| = d(z, y) \le r.$$

Donc $u \in B_f(x+y,r)$.

$$-x + B_f(y,r) \supset B_f(x+y,r).$$

Soit $u \in B_f(x+y,r)$. On note z=u-x. Alors u=x+z et on a :

$$d(y,z) = \|(u-x) - y\| = \|u - (x+y)\| = d(x+y,u) \le r.$$

D'où $z \in B_f(y,r)$ et donc $u \in x + B_f(y,r)$.

Il en résulte $x + B_f(y, r) = B_f(x + y, r)$.

Exercice 3.

Soit E un espace vectoriel et $N: E \mapsto \mathbb{R}$ une fonction telle que :

i) N est positive sur E;

- i) pour tout $x \in E$, $N(x) = 0 \implies x = 0_E$;
- iii) pour tous $x \in E$ et $\lambda \in \mathbb{K}$, $N(\lambda x) = |\lambda| N(x)$;

Montrer que N est une norme si, et seulement si, $B_f = \{x \in E \mid N(x) \le 1\}$ est convexe.

Correction.

Si N est une norme, ses boules sont convexes et B_f étant la boule unité fermée de N, c'est donc une partie convexe.

Réciproquement, supposons B_f est convexe. Tout d'abord, montrons que la "boule fermée" centrées en 0 et de tout rayon sont convexes également.

Soit r > 0 et $B_f(r) = \{x \in E \mid N(x) \le r\}$. Soit $x, y \in B_f(r)$ et $t \in [0, 1]$. Comme $\frac{1}{r}x$ et $\frac{1}{r}y$ sont dans B_f qui est convexe, $\frac{1}{r}(tx + (1-t)y) = t\frac{1}{r}x + (1-t)\frac{1}{r}y \in B_f$. Ainsi, $N(\frac{1}{r}(tx + (1-t)y)) \le 1$ et donc, par l'axiome iii), $N(tx + (1-t)y) \le r$ i.e. $tx + (1-t)y \in B_f(r)$. Il en résulte que $B_f(r)$ est convexe.

Montrons alors que N est une norme : vérifions l'inégalité triangulaire. Soit $x,y\in E$ et $r=\frac{1}{2}(N(x)+N(y))$.

Comme x, y sont dans $B_f(r)$ et que $B_f(r)$ est convexe, le vecteur $\frac{1}{2}(x+y)$ appartient à $B_f(r)$ et donc :

$$\frac{1}{2}N(x+y) = N\left(\frac{1}{2}(x+y)\right) \le r = \frac{1}{2}(N(x) + N(y))$$

D'où $N(x+y) \le N(x) + N(y)$.

Par suite, N est une norme sur E.

Exercice 4.

Soit $E = C([0,1],\mathbb{R})$ muni de la norme infinie et

$$A = \left\{ f \in E \mid f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}.$$

Montrer que pour tout $f \in A$, $||f||_{\infty} > 1$ et déterminer $d(0_E, A)$.

Exercice 5.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé avec $E \neq \{0\}$ et $x, x' \in E$ et $r, r' \in \mathbb{R}_+^*$. Montrer $B_f(x, r) = B_f(x', r')$ si, et seulement si, x = x' et r = r'.

Indication.

Une implication est évidente, montrer l'implication réciproque par contraposée en commençant par le cas : x = x' et $r \neq r'$.

Ensuite, dans le cas $x \neq x'$, faire un dessin!

Correction

Il est clair x = x' et r = r' implique $B_f(x, r) = B_f(x', r')$.

Prouvons la réciproque par contraposée. On suppose $(x,r) \neq (x',r')$. Montrons que les boules sont différentes.

 $1er\ cas: x=x'$ et $r'\neq r$. Quitte à échanger r et r', on peut supposer r'>r. Soit u un vecteur unitaire de E (il existe car $E\neq\{0\}$) et y=x+r'u. Alors $d(x,y)=\|x-y\|=r'\|u\|=r'>r$ et donc $y\in B_f(x',r')$ et $y\notin B(x,r)$. Par suite les deux boules ne sont pas égales. $2eme\ cas: x\neq x'$. Quitte à échanger r et r', on peut supposer $r'\geq r$. Considérons un élément y sur la droite passant par x et x' tel que x' soit entre x et y et tel qu'il soit assez loin pour ne pas être dans la boule centrée en x. Définissons formellement un tel élément.

Soit u le vecteur unitaire défini par $u = \frac{1}{\|x'-x\|}x' - x$ et on pose y = x' + r'u. Comme précédemment, on a d(x',y) = r' et donc $y \in B_f(x',r')$. Or on a :

$$y - x = (x' - x)(1 + \frac{r'}{\|x' - x\|}),$$

d'où

$$d(x,y) = (1 + \frac{r'}{\|x' - x\|})\|(x' - x)\| = \|(x' - x)\| + r' > r.$$

Il en résulte que $y \notin B_f(x,r)$.

Dans tous les cas, $B_f(x,r) \neq B_f(x',r')$.

Exercice 6.

Soit E un espace vectoriel normé. Pour $a \in E$ et r > 0, on note $\bar{B}(a,r)$ la boule fermée de centre a et de rayon r. On fixe $a, b \in E$ et r, s > 0.

- 1. On suppose que $\bar{B}(a,r) \subset \bar{B}(b,s)$. Démontrer que $||a-b|| \leq s-r$.
- 2. On suppose que $\bar{B}(a,r) \cap \bar{B}(b,s) = \emptyset$. Montrer que ||a-b|| > r + s.

Correction.

Pour comprendre ce type d'exercice, il faut impérativement commencer par réaliser un dessin.

1. La contrainte la plus forte exprimée par l'inclusion $\bar{B}(a,r) \subset \bar{B}(b,s)$ est obtenue pour le point de $\bar{B}(a,r)$ le plus éloigné de b possible. On considère ce point qui est donné par $x = a + r(a-b)/\|a-b\|$. x est dans $\bar{B}(a,r)$, donc dans $\bar{B}(b,s)$. Or

$$x - b = \left(1 + \frac{r}{\|b - a\|}\right)(a - b) \implies \|x - b\| = \|b - a\| + r.$$

Puisque $||x - b|| \le s$, on en déduit le résultat recherché.

2. Cette fois, on considère y "le" point de $\bar{B}(a,r)$ le plus proche de b. On a donc $y=a+r(b-a)/\|b-a\|$. Puisque $y\notin \bar{B}(b,s)$, on a $\|y-b\|>s$. Mais on a aussi

$$y - b = \left(1 - \frac{r}{\|b - a\|}\right)(a - b) \implies \|y - b\| = \|b - a\| - r.$$

Ceci donne le résultat voulu.

b. Comparaison de normes

Exercice 7.

Soit E l'espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . On définit pour $f\in E$

$$||f||_{\infty} = \sup\{|f(x)|; \ x \in [0,1]\}, \ ||f||_{1} = \int_{0}^{1} |f(t)|dt.$$

Vérifier que $\|.\|_{\infty}$ et $\|.\|_{1}$ sont deux normes sur E. Montrer que, pour tout $f \in E$, $\|f\|_{1} \le \|f\|_{\infty}$. En utilisant la suite de fonctions $f_{n}(x) = x^{n}$, prouver que ces deux normes ne sont pas équivalentes.

Correction

Remarquons d'abord qu'une fonction continue sur [0,1] est bornée (et atteint ses bornes). Ceci justifie que $||f||_{\infty}$ est bien défini pour tout $f \in E$. De plus, on a toujours $||f||_{\infty} \ge 0$. D'autre part, si $||f||_{\infty} = 0$, alors pour tout x dans [0,1], on a f(x) = 0, et donc f = 0. Etudions l'inégalité triangulaire : soient f et g deux éléments de E. Pour tout x de [0,1], on a :

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}.$$

Passant au max, on obtient:

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Concernant l'homogénéité, prenons $\lambda \in \mathbb{R}$ et f dans E. Pour tout x de [0,1], on a :

$$|\lambda f(x)| = |\lambda||f(x)|,$$

et passant au max, on a bien l'égalité voulue. Pour la norme $\|.\|_1$: on arrive bien dans \mathbb{R}^+ . Rappelons que l'intégrale d'une fonction continue positive est nulle si, et seulement si, il s'agit de la fonction nulle. Rappelons d'autre part que si f est continue, alors |f| est continue. On a donc démontré $\|f\|_1 = 0 \implies f = 0$. D'autre part, pour tout x de [0,1], l'inégalité triangulaire de la valeur absolue donne :

$$|f(x) + g(x)| \le |f(x)| + |g(x)|.$$

Intégrer cette inégalité entre 0 et 1 donne l'inégalité triangulaire pour $\|.\|_1$. En effet, la linéarité de l'intégrale donne

$$\int_0^1 |\lambda f(x)| dx = |\lambda| \int_0^1 |f(x)| dx.$$

Remarquons que, pour chaque x de [0,1], on a :

$$|f(x)| \le ||f||_{\infty}.$$

On intègre cette inégalité entre 0 et 1, et on trouve :

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty.$$

Pour $f_n(x) = x^n$, on a

$$||f_n||_{\infty} = 1, ||f_n||_1 = \int_0^1 x^n dx = \frac{1}{n+1}.$$

Si les normes étaient équivalentes, il existerait une constante C > 0 telle que $||f||_{\infty} \le C||f||_1$. Pour $f = f_n$, on obtient :

$$||f_n||_{\infty} \le C||f_n||_1 \iff 1 \le \frac{C}{n+1},$$

et un passage à la limite en n donne 1 < 0.

Exercice 8.

Soit $E=\mathbb{R}[X]$ l'espace vectoriel des polynômes. On définit sur E trois normes par, si $P=\sum_{i=0}^p a_i X^i$:

$$N_1(P) = \sum_{i=0}^{p} |a_i|, \ N_2(P) = \left(\sum_{i=0}^{p} |a_i|^2\right)^{1/2}, \ N_{\infty}(P) = \max_i |a_i|.$$

Vérifier qu'il s'agit de 3 normes sur $\mathbb{R}[X]$. Sont-elles équivalentes deux à deux ?

Correction

La démonstration qu'il s'agit de normes suit en tout point celle classique concernant les mêmes normes sur \mathbb{R}^n . Supposons que $N_1(P) \leq CN_{\infty}(P)$. Prenons $P_n = 1 + X + \cdots + X^n$. Alors $N_1(P_n) = n + 1 \leq C$, ce qui est impossible pour n grand. Si $N_2(P) \leq CN_{\infty}(P)$, pour le même polynôme P_n , on a $N_2(P_n) = \sqrt{n+1} \leq C$, ce qui est toujours impossible. Enfin, la même suite de polynômes, et le même raisonnement, prouve qu'une inégalité $N_1(P_n) \leq CN_2(P_n)$ est tout aussi impossible. Remarquons que la preuve que ces trois normes ne sont pas équivalentes repose sur le fait que $\mathbb{R}[X]$ est de dimension infinie.

Exercice 9.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$. On définit les normes $\|\cdot\|_1, \|\cdot\|_2$ et $\|\cdot\|_{\infty}$ par

$$\|f\|_1 = \int_0^1 |f(t)| dt, \ \|f\|_2 = \left(\int_0^1 |f(t)|^2\right)^{1/2} \ \text{et} \ \|f\|_\infty = \sup_{x \in [0,1]} |f(x)|.$$

Démontrer que ces trois normes ne sont pas équivalentes deux à deux.

Correction

Considérons, pour $n \ge 1$, $f_n(x) = x^n$. On a alors

$$||f_n||_{\infty} = 1$$
, $||f_n||_2 = \frac{1}{\sqrt{2n+1}}$ et $||f_n||_1 = \frac{1}{n+1}$.

Si $\|\cdot\|_{\infty}$ et $\|\cdot\|_2$ étaient équivalentes, il existerait A, B > 0 tels que, pour tout n,

$$A \le \frac{\|f_n\|_2}{\|f_n\|_\infty} \le B.$$

Mais $\frac{\|f_n\|_2}{\|f_n\|_\infty} = \frac{1}{\sqrt{2n+1}}$ et un tel encadrement est impossible (on obtiendrait à la limite $A \leq 0$).

Exercice 10.

Sur $E = \mathbb{R}[X]$, on définit N_1 et N_2 par

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|.$$

- 1. Démontrer que N_1 et N_2 sont deux normes sur E.
- 2. Étudier pour chacune des deux normes la convergence de la suite (P_n) définie par $P_n = \frac{1}{n}X^n$.
- 3. Les deux normes sont-elles équivalentes?

Correction

1. On vérifie d'abord que ces deux quantités sont bien définies. En particulier, la somme apparaissant dans $N_1(P)$ est en réalité une somme finie. Prenons ensuite P, Q dans E et $\lambda \in \mathbb{R}$. Alors, pour tout $k \geq 0$,

$$|(P+Q)^{(k)}(0)| \le |P^{(k)}(0)| + |Q^{(k)}(0)|$$

et donc, en passant à la somme $N_1(P+Q) \leq N_1(P) + N_1(Q)$. On a clairement $N_1(\lambda P) = |\lambda|N_1(P)$. Enfin, si $N_1(P) = 0$, alors 0 est une racine de multiplicité infinie de P, ce qui entraı̂ne que P = 0. Passons maintenant à N_2 . On a, pour tout $t \in [-1, 1]$,

$$|(P+Q)(t)| \le |P(t)| + |Q(t)| \le N_2(P) + N_2(Q).$$

En passant au sup pour $t \in [-1, 1]$, on en déduit que

$$N_2(P+Q) \le N_2(P) + N_2(Q).$$

Il est clair que $N_2(\lambda P) = |\lambda| N_2(P)$, et si $N_2(P) = 0$, alors P admet une infinité de racines, donc P = 0. Ainsi, N_2 est également une norme sur E.

2. On a

$$N_1(P_n) = (n-1)!$$
 et $N_2(P_n) = \frac{1}{n}$.

Ainsi, la suite (P_n) converge vers 0 pour N_2 , mais n'est pas bornée et donc ne converge pas pour N_1 .

3. Les normes ne peuvent pas être équivalentes, sinon une suite convergente pour une norme serait une suite convergente pour l'autre norme.

2. Exercices d'entraînement

a. Norme p d'une autre manière

Exercice 11.

Soient $(x, y, p, q) \in \mathbb{R}_+^*$ tels que 1/p + 1/q = 1, et $a_1, \ldots, a_n, b_1, \ldots, b_n$ 2n réels strictement positifs.

1. Montrer que

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q.$$

- 2. On suppose dans cette question que $\sum_{i=1}^n a_i^p = \sum_{i=1}^n b_i^q = 1$. Montrer que $\sum_{i=1}^n a_i b_i \leq 1$.
- 3. En déduire la splendide inégalité de Hölder :

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}.$$

4. On suppose en outre que p>1. Déduire de l'inégalité de Hölder l'inégalité de Minkowski :

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} b_i^p\right)^{1/p}.$$

5. On définit pour $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

Démontrer que $\|\cdot\|_p$ est une norme sur \mathbb{R}^n .

Correction.

1. La fonction ln est concave, et on a donc :

$$\ln\left(\frac{1}{p}x^{p} + \frac{1}{q}y^{q}\right) \ge \frac{1}{p}\ln\left(x^{p}\right) + \frac{1}{q}\ln\left(y^{q}\right) = \ln\left(xy\right).$$

Il suffit ensuite d'utiliser la croissance de la fonction exponentielle pour en déduire le résultat voulu.

2. Il suffit de sommer les n équations :

$$a_i b_i \le \frac{1}{p} a_i^p + \frac{1}{q} b_i^q.$$

3. On pose $\alpha_i = \frac{a_i}{\left(\sum_{i=1}^n a_i^p\right)^{1/p}}$ et $\beta_i = \frac{b_i}{\left(\sum_{i=1}^n b_i^q\right)^{1/q}}$. D'après la question précédente,

$$\sum_{i=1}^{n} \alpha_i \beta_i \le 1.$$

Il suffit ensuite de remplacer α_i et β_i par leur valeur pour trouver la formule.

4. On décompose $(a_i+b_i)^p$ en $(a_i+b_i)^{p-1}a_i+(a_i+b_i)^{p-1}b_i$. Soit q tel que 1/p+1/q=1,

8

c'est à dire que pq - q = p. En appliquant Hölder à chacun des membres, on a :

$$\sum_{i=1}^{n} (a_i + b_i)^p \leq \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \times \left(\sum_{i=1}^{n} |a_i + b_i|^{(p-1)q}\right)^{1/q} + \left(\sum_{i=1}^{n} b_i^p\right)^{1/p} \times \left(\sum_{i=1}^{n} |a_i + b_i|^{(p-1)q}\right)^{1/q} \\
\leq \left[\left(\sum_{i=1}^{n} a_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} b_i^p\right)^{1/p}\right] \times \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1-1/p} .$$

Il suffit de tout refaire passer au premier membre pour obtenir le résultat. Remarquons que le résultat est aussi vrai pour p=1. Dans ce cas, il est juste trivial!

5. L'inégalité précédente se traduit très facilement en disant que $\|\cdot\|_p$ vérifie l'inégalité triangulaire $\|x+y\|_p \leq \|x\|_p + \|y\|_p$. Il est en outre trivial de vérifier que $\|\lambda x\|_p = |\lambda| \|x\|_p$ et que $\|x\|_p = 0 \iff x = 0$. Ainsi, $\|\cdot\|_p$ définit bien une norme sur \mathbb{R}^n .

b. Comparaison de normes

Exercice 12.

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour $f \in E$, on pose

$$N(f) = \left(f^2(0) + \int_0^1 (f'(t))^2 dt\right)^{1/2}.$$

- 1. Démontrer que N est une norme sur E.
- 2. Démontrer que, pour tout $f \in E$, $||f||_{\infty} \leq \sqrt{2}N(f)$.
- 3. Les deux normes N et $\|\cdot\|_{\infty}$ sont elles équivalentes?

Correction.

- 1. Posons, pour $f,g\in E, \phi(f,g)=f(0)g(0)+\int_0^1f'(t)g'(t)dt$. Il est clair que $N(f)=\sqrt{\phi(f,f)}$ et donc il suffit de démontrer que ϕ est un produit scalaire. C'est clairement une forme bilinéaire, symétrique et positive. De plus, si $\phi(f,f)=0$, alors f(0)=0 et $\int_0^1(f'(t))^2dt=0$. Puisque $(f')^2$ est une fonction continue et positive sur [0,1], et d'intégrale nulle, f' est identiquement nulle sur [0,1]. Ainsi, f'=0 donc f est constante, et comme f(0)=0, f est la fonction nulle. ϕ est une forme bilineaire symétrique définie positive, et donc N est une norme.
- 2. Soit $x \in [0,1]$. Alors on écrit

$$f(x) = f(0) + \int_0^x f'(t)dt.$$

On en déduit que

$$|f(x)| \le |f(0)| + \int_0^x |f'(t)| dt.$$

D'après l'inégalité de Cauchy-Schwarz dans l'intégrale, on tire

$$|f(x)| \leq |f(0)| + \left(\int_0^x |f'(t)|^2\right)^{1/2} \left(\int_0^x 1^2 dt\right)^{1/2}$$

$$\leq |f(0)| + \left(\int_0^1 |f'(t)|^2 dt\right)^{1/2}.$$

On applique ensuite (encore!) l'inégalité de Cauchy-Schwarz, mais cette fois dans \mathbb{R}^2 . On en déduit que

$$|f(x)| \le \left(|f(0)|^2 + \int_0^1 (f'(t))^2 dt\right)^{1/2} \times \left(1^2 + 1^2\right)^{1/2}.$$

Prenant le sup pour $x \in [0,1]$, on en déduit bien que

$$||f||_{\infty} \le \sqrt{2}N(f).$$

3. Il est facile de vérifier que $||x^n||_{\infty} = 1$ tandis que $N(x^n) = \frac{n}{\sqrt{2n-1}}$. Ainsi, les deux normes ne peuvent pas être équivalentes.

Exercice 13.

Soit A une partie bornée d'un espace vectoriel normé $(E, \| \cdot \|)$. On note \mathcal{L} l'espace vectoriel des applications lipschitziennes de A dans E.

- 1. Démontrer que les éléments de $\mathcal L$ sont des fonctions bornées.
- 2. Pour $f \in \mathcal{L}$, on pose

$$K_f = \{k \in \mathbb{R}_+; \ \forall (x, y) \in A^2, \ \|f(x) - f(y)\| \le k\|x - y\|\}.$$

Démontrer que K_f admet une borne inférieure. Dans la suite, on notera C_f cette borne inférieure.

- 3. Justifier que $C_f \in K_f$.
- 4. Démontrer que si $f, g \in \mathcal{L}$, alors $C_{f+g} \leq C_f + C_g$.
- 5. Pour $a \in A$, on note $N_a(f) = ||f(a)|| + C_f$. Démontrer que N_a est une norme sur \mathcal{L} .
- 6. Soient $a \neq b \in A$. Les normes N_a et N_b sont-elles équivalentes?

Correction

1. Soit $f \in \mathcal{L}$. Il existe donc $K \in \mathbb{R}_+$ tel que, pour tous $x, y \in A$, $||f(x) - f(y)|| \le K||x - y||$. Fixons $a \in A$. Alors, pour tout $x \in A$, on a par l'inégalité triangulaire

$$||f(x)|| \le ||f(a)|| + ||f(x) - f(a)|| \le ||f(a)|| + K||x - a|| \le ||f(a)|| + K \operatorname{diam}(A).$$

Ainsi, f est bornée.

2. K_f est une partie non vide (car f est lipschitzienne) et minorée. Elle admet donc une borne inférieure.

3. Soit (k_n) une suite de K_f qui converge vers C_f . Alors, pour tous $x, y \in A$, on a

$$||f(x) - f(y)|| \le k_n ||x - y||.$$

On fait tendre n vers l'infini et on a

$$||f(x) - f(y)|| \le C_f ||x - y||$$

ce qui entraı̂ne bien que $C_f \in K_f$.

4. Fixons $x, y \in A$. Alors on a par l'inégalité triangulaire

$$||(f+g)(x) - (f+g)(y)|| \le ||f(x) - f(y)|| + ||g(x) - g(y)||.$$

Puisque $C_f \in K_f$ et que $C_q \in K_q$, on a encore

$$||(f+g)(x) - (f+g)(y)|| \le C_f ||x-y|| + C_g ||x-y|| \le (C_f + C_g) ||x-y||.$$

Autrement dit, $C_f + C_g \in K_{f+g}$ et donc $C_{f+g} \leq C_f + C_g$.

5. N_a est bien à valeurs dans \mathbb{R}_+ . Si f = 0, on a $N_a(f) = 0$ et réciproquement, si $N_a(f) = 0$, alors f(a) = 0 et pour tout $x \in A$, on a $||f(x) - f(a)|| \le 0||x - a||$, soit f(x) = f(a) = 0. La fonction est bien identiquement nulle. De plus, si $f, g \in \mathcal{L}$, alors on a

$$N_a(f+g) = |f(a) + g(a)| + C_{f+g} \le |f(a)| + |g(a)| + C_f + C_g = N_a(f) + N_a(g).$$

Comme de plus, $C_{\lambda f} = |\lambda| C_f$ pour tout $\lambda \in \mathbb{R}$ (pourquoi?), on a également que $N_a(\lambda f) = |\lambda| N_a(f)$.

6. Par symétrie du rôle joué par a et b, il suffit de trouver une constante M>0 telle que $N_b(f) \leq MN_a(f)$ pour tout $f \in \mathcal{L}$ et même, en faisant attention à la forme de N_a et de N_b , il suffit de prouver que $|f(b)| \leq M(|f(a)| + C_f)$. Mais,

$$||f(b)|| \le ||f(a)|| + ||f(b) - f(a)|| \le ||f(a)|| + C_f ||b - a|| \le ||f(a)|| + \operatorname{diam}(A)C_f \le MN_a(f)$$

où $M = \max(\operatorname{diam}(A), 1)$. Ainsi, les deux normes sont équivalentes.

Exercice 14.

Soit N l'application de \mathbb{R}^2 dans $\mathbb{R}: (x,y) \mapsto \sup_{t \in \mathbb{R}} \frac{|x+ty|}{\sqrt{1+t^2}}$.

- 1. Montrer que N est une norme sur \mathbb{R}^2 .
- 2. La comparer à la norme euclidienne.
- 3. Expliquer.

Correction.

1. D'abord, si N(x,y)=0, alors pour tout t, on a x+ty=0. Choisir t=0 montre que l'on a x=0. Ensuite, si on prend t=1, on obtient également y=0, et donc (x,y)=0. L'homogénéité est claire. Enfin, pour tous (x,y) et tous (x',y'), on a

$$|((x+x')+t(y+y')| \le |x+ty|+|x'+ty'|,$$

en utilisant simplement l'inégalité triangulaire pour la valeur absolue. On en déduit :

$$\frac{|(x+x')+t(y+y')|}{\sqrt{1+t^2}} \le \frac{|x+ty|}{\sqrt{1+t^2}} + \frac{|x'+ty'|}{\sqrt{1+t^2}} \le N(x,y) + N(x',y').$$

Passant au sup, on obtient :

$$N((x,y) + (x',y')) \le N(x,y) + N(x',y').$$

2. D'après l'inégalité de Cauchy Schwarz, on a :

$$|x + ty| \le \sqrt{x^2 + y^2} \sqrt{1 + t^2},$$

ce qui donne

$$\frac{|x+ty|}{\sqrt{1+t^2}} \le N_2(x,y).$$

Pour minorer N(x,y) à l'aide de $N_2(x,y)$, on va donner une valeur particulière au paramètre t. Pour cela, on va (enfin!) étudier la fonction qui à t associe $|x+ty|/\sqrt{1+t^2}$, ou plus précisément le carré de cette fonction. On pose donc :

$$f(t) = \frac{(x+ty)^2}{1+t^2}.$$

Le calcul de la dérivée donne, après simplifications :

$$f'(t) = \frac{2(x+ty)(y-tx)}{(1+t^2)^2}.$$

Supposons d'abord $x \neq 0$. f est alors maximale pour t = y/x. Et si on évalue en y/x la quantité $|x + ty|/\sqrt{1 + t^2}$, on trouve précisément... $N_2(x, y)$. Si maintenant x = 0, on a

$$\lim_{t \to +\infty} \frac{|ty|}{\sqrt{1+t^2}} = |y| = N_2(x,y)$$

et donc $N(x,y) \geq N_2(x,y)$. On vient donc de démontrer que $N(x,y) = N_2(x,y)$, ce qui nous aurait bien simplifié la vie pour les questions précédentes... il suffit de donner par exemple la valeur 1 et la valeur -1 au paramètre t.

3. Voila une explication, parmi d'autres, au fait que $N=N_2$. La distance (dans le plan muni d'un repère euclidien) du point M de coordonnées (x,y) à la droite d'équation X+tY=0 vaut précisément $|x+ty|/\sqrt{1+t^2}$. Cette distance est toujours inférieure à la distance de M à l'origine, qui vaut $N_2(x,y)$. Voila pourquoi on a $N(x,y) \leq N_2(x,y)$. Cette distance vaut exactement la distance à l'origine lorsque la droite que l'on considère est perpendiculaire à (OM). C'est ainsi que l'on a $N(x,y) \geq N_2(x,y)$.

Exercice 15.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$. Pour $f,g \in E$, on pose $N_g(f) = ||gf||_{\infty}$.

- 1. Donner une condition nécessaire et suffisante sur g pour que N_g soit une norme.
- 2. Donner une condition nécessaire et suffisante sur g pour que N_g soit équivalente à la norme infinie.

Correction.

- 1. La seule propriété qui pose problème est de prouver que si $N_g(f)=0$, alors f=0. Si N_g n'est pas une norme, alors il existe $f\in\mathcal{C}([0,1]),\,f\neq0$, avec $N_g(f)=0$. Autrement, f(x)g(x)=0 pour tout $x\in[0,1]$. Puisque f est continue et non-nulle, il existe un intervalle I, non réduit à un point, sur lequel f ne s'annule pas. Mais alors, on en déduit que g doit être nulle sur I. Réciproquement, si g s'annule sur un intervalle I non-réduit à un point, alors on peut construire f continue qui s'annule hors de I et tel qu'il existe g0 et g1 avec g2 (faire un dessin et construire g3 comme un "pic"). On a donc g4 et g5 et g6 et g7 et g8 est une norme si et seulement si g8 ne s'annule pas sur un intervalle non réduit à un point.
- 2. Remarquons déjà que g, continue sur le segment [0,1], est bornée par une constante M>0. On a donc $N_g(f) \leq M \|f\|_{\infty}$ pour tout $f \in E$. Supposons de plus que g ne s'annule pas. Alors, puisque |g| est continue et atteint ses bornes sur [0,1], il existe $\delta>0$ tel que $|g(x)| \geq \delta$ pour tout $x \in [0,1]$. On a alors clairement $N_g(f) \geq \delta \|f\|_{\infty}$ et les deux normes sont équivalentes. Réciproquement, si g s'annule, prouvons que les deux normes ne sont pas équivalentes. Soit M>0. On va construire $f\in E, f\neq 0$, tel que $\|f\|_{\infty} \geq MN_g(f)$. Pour cela, on sait, par continuité de g, qu'il existe un intervalle I, non-réduit à un point, et contenu dans [0,1], tel que $|g(x)| \leq \frac{1}{M}$ pour tout $x \in I$. Comme à la question précédente, on peut construire f nulle en dehors de I, avec $\|f\|_{\infty} \leq 1$ et f(a)=1 pour au moins un a de I. On a alors

$$||f||_{\infty} = 1$$
 tandis que $N_g(f) = \sup_{x \in I} |g(x)f(x)| \le \frac{1}{M}$.

Ceci prouve bien l'inégalité annoncée, et les deux normes ne sont pas équivalentes. En conclusion, on a démontré que les deux normes sont équivalentes si et seulement si g ne s'annule pas.