Mathématiques spéciales

Feuille d'exercices n°5

Exercices obligatoires: 1; 2; 3; 4; 8; 10

Exercices en groupes :

- exo n°5 Groupe 1 : Lucas; Augustin; Constant; Clément;
- exo n°6 Groupe 2 : Adrien; Michèle; Camil; Maxime;
- exo n°9 Groupe 3 : Luca; Thibault; Ernest; Malarvijy;
- exo n°11 Groupe 4 : Raphaël; Daniel; Ingrid; Rayan;
- exo n°12 Groupe 5 : Maxence; Ambroise; Tredy; Sébastien;

1. Exercices importants

Exercice 1.

- 1. Soit $n, m \in \mathbb{Z}$. Montrer que $m \mid n \pmod{m}$ si, et seulement si $n\mathbb{Z} \subset m\mathbb{Z}$.
- 2. a) Décrire les ensembles $3\mathbb{Z} \cap 4\mathbb{Z}$, $6\mathbb{Z} \cap 9\mathbb{Z}$, $4\mathbb{Z} \cap 8\mathbb{Z}$;
 - b) Plus généralement, caractériser le sous-groupe $n\mathbb{Z}\cap m\mathbb{Z}$ pour $n,m\in\mathbb{N}.$
- 3. Soit $n, m \in \mathbb{Z}$.
 - a) Montrer que

$$n\mathbb{Z} + m\mathbb{Z} = \{nu + mv \mid u, v \in \mathbb{Z}\}\$$

est un sous-groupe de \mathbb{Z} ;

b) Caractériser ce sous-groupe.

Exercice 2. Théorème de Lagrange

Soit (G, \cdot) un groupe fini et H un sous-groupe de G.

- 1. Montrer que pour tout $a \in G$, H et $aH = \{ah; h \in H\}$ ont le même nombre d'éléments.
- 2. Soient $a, b \in G$. Démontrer que aH = bH ou $aH \cap bH = \emptyset$.
- 3. En déduire que le cardinal de ${\cal H}$ divise le cardinal de ${\cal G}.$

2. Exercices basiques

a. Ordre d'un élément dans un groupe

Exercice 3.

Quel est l'ordre de $\bar{9}$ dans $\mathbb{Z}/12\mathbb{Z}$?

Exercice 4.

Soit G un groupe et $x \in G$ d'ordre n. Quel est l'ordre de x^2 ?

Exercice 5.

Soit G un groupe dont tous les éléments (sauf l'élément neutre) sont d'ordre au plus deux. Démontrer que G est abélien.

3. Exercices d'entraînement

a. Ordre d'un élément dans un groupe

Exercice 6.

Soit G un groupe de cardinal 2n.

1. Démontrer que la relation $\mathcal R$ définie sur G par

$$x\mathcal{R}y \iff x = y \text{ ou } x = y^{-1}$$

est une relation d'équivalence sur G.

2. En déduire que G admet des éléments d'ordre deux.

Exercice 7.

Soient G et H deux groupes.

- 1. Montrer que si g est un élément d'ordre p de G et h un élément d'ordre q de H, alors (g,h) est d'ordre $\operatorname{ppcm}(p,q)$ dans $G\times H$.
- 2. On suppose que G et H sont cycliques. Démontrer que $G \times H$ est cyclique si et seulement si les ordres de G et H sont premiers entre eux.

Exercice 8.

Soit G un groupe admettant un nombre fini de sous-groupes.

- 1. Démontrer que tout élément de G est d'ordre fini.
- 2. En déduire que G est fini.

Exercice 9.

Soit $G = (\mathbb{Z}/20\mathbb{Z})^*$ le groupe des éléments inversibles de $\mathbb{Z}/20\mathbb{Z}$.

- 1. Donner la liste de tous les éléments de G.
- 2. Pour tout $a \in G$, déterminer le sous groupe $\langle a \rangle$ engendré par a.
- 3. Déterminer un ensemble minimal de générateurs de (G, \cdot) .
- 4. (G, \cdot) est-il un groupe cyclique?
- 5. Déterminer tous les sous-groupes de G et, pour chaque sous-groupe, préciser un ensemble de générateurs.
- 6. Parmi les sous-groupes de (G,\cdot) , lesquels sont isomorphes à un groupe additif $(\mathbb{Z}/m\mathbb{Z},+)$?

4. Exercices d'approfondissement

a. Ordre d'un élément dans un groupe

Exercice 10.

Soit G un groupe abélien, x et y deux éléments de G d'ordres respectifs p et q.

- 1. On suppose que p et q sont premiers entre eux. Démontrer que xy est d'ordre pq.
- 2. Importance des hypothèses 1 : Si $H = GL_2(\mathbb{R})$, $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, vérifier que A et B sont d'ordre fini, mais que AB n'est pas d'ordre fini.
- 3. Importance des hypothèses 2 : Si p et q ne sont pas supposés premiers entre eux, démontrer que le produit xy n'est pas nécessairement d'ordre pq, ou d'ordre ppcm(p,q).
- 4. Une application:
 - (a) Soit d un diviseur de p. Démontrer qu'il existe un élément d'ordre d dans G.
 - (b) En déduire que G admet des éléments d'ordre ppcm(p,q).
 - (c) On suppose de plus que G est fini. Démontrer que G admet un élément dont l'ordre est le ppcm de l'ordre des éléments de G.

Exercice 11.

Soit G un groupe cyclique et soit H un sous-groupe de G. Démontrer que H est cyclique.

Exercice 12.

- 1. Soit G un groupe et H, K deux sous-groupes de G d'ordre des entiers premiers. Démontrer que H = K ou que $H \cap K = \{e\}$.
- 2. Démontrer que dans un groupe d'ordre 35, il existe un élément d'ordre 5 et un élément d'ordre 7.