Mathématiques spéciales

Corrigé de la feuille d'exercices n°5

Exercices obligatoires: 1; 2; 3; 4; 8; 10

Exercices en groupes :

- exo n°5 Groupe 1 : Lucas; Augustin; Constant; Clément;
- exo n°6 Groupe 2 : Adrien; Michèle; Camil; Maxime;
- exo n°9 Groupe 3 : Luca; Thibault; Ernest; Malarvijy;
- exo n°11 Groupe 4 : Raphaël; Daniel; Ingrid; Rayan;
- exo n°12 Groupe 5 : Maxence; Ambroise; Tredy; Sébastien;

1. Exercices importants

Exercice 1.

- 1. Soit $n, m \in \mathbb{Z}$. Montrer que $m | n \pmod{m}$ si, et seulement si $n\mathbb{Z} \subset m\mathbb{Z}$.
- 2. a) Décrire les ensembles $3\mathbb{Z} \cap 4\mathbb{Z}$, $6\mathbb{Z} \cap 9\mathbb{Z}$, $4\mathbb{Z} \cap 8\mathbb{Z}$;
 - b) Plus généralement, caractériser le sous-groupe $n\mathbb{Z} \cap m\mathbb{Z}$ pour $n, m \in \mathbb{N}$.
- 3. Soit $n, m \in \mathbb{Z}$.
 - a) Montrer que

$$n\mathbb{Z} + m\mathbb{Z} = \{nu + mv \mid u, v \in \mathbb{Z}\}\$$

est un sous-groupe de \mathbb{Z} ;

b) Caractériser ce sous-groupe.

Correction.

- 1. Soit $n, m \in \mathbb{Z}$.
 - (\Rightarrow). On suppose m|n. Alors il existe $p \in \mathbb{Z}$ tel que n = mp. Soit $k \in n\mathbb{Z}$. Alors il existe $q \in \mathbb{Z}$ tel que k = nq. Par suite,

$$k = nq = (mp)q = m(pq) \in m\mathbb{Z},$$

donc $n\mathbb{Z} \subset m\mathbb{Z}$.

- (\Leftarrow). On suppose $n\mathbb{Z} \subset m\mathbb{Z}$. Alors, comme $n = n.1 \in n\mathbb{Z}$, n appartient à $m\mathbb{Z}$. Donc il existe $p \in \mathbb{Z}$ tel que n = mp i.e. m|n.
- 2. a) On a:

$$--3\mathbb{Z} \cap 4\mathbb{Z} = 12\mathbb{Z}$$

- $-6\mathbb{Z} \cap 9\mathbb{Z} = 18\mathbb{Z}$
- $-4\mathbb{Z} \cap 8\mathbb{Z} = 8\mathbb{Z}$
- b) Soit $n,m\in\mathbb{Z}$. Alors $n\mathbb{Z}\cap m\mathbb{Z}$ est un sous-groupe de \mathbb{Z} comme intersection de sous-groupes de \mathbb{Z} . Ainsi, il existe $M\in\mathbb{Z}$ tel que $n\mathbb{Z}\cap m\mathbb{Z}=M\mathbb{Z}$.

 Montrons que $M=\operatorname{ppcm}(n,m)$. Soit k un multiple commun de n et m. Alors n|k et m|k donc $k\in n\mathbb{Z}\cap m\mathbb{Z}=M\mathbb{Z}$. Par suite M|k. Il en résulte que $M=\operatorname{ppcm}(n,m)$. Remarque : on a utilisé le résultat suivant (démontré en sup) : Soit $n,n\in\mathbb{Z}$ et $M\in\mathbb{N}$. Alors $M=\operatorname{ppcm}(n,m)$ si, et seulement si, pour tout multiple commun k de n et m, M|k.
- 3. Soit $n, m \in \mathbb{Z}$.
 - a) On considère

$$n\mathbb{Z} + m\mathbb{Z} = \{nu + mv \mid u, v \in \mathbb{Z}\}.$$

- i) On a $0 = n.0 + m.0 \in n\mathbb{Z} + m\mathbb{Z}$
- ii) Soit $x, y \in n\mathbb{Z} + m\mathbb{Z}$. Alors il existe $u, v, p, q \in \mathbb{Z}$ tels que x = nu + mv et y = np + mq. Montrons que $x + (-y) \in n\mathbb{Z} + m\mathbb{Z}$. On a :

$$x - y = nu + mv - (np + mq) = n(p - u) + m(v - q) \in n\mathbb{Z} + m\mathbb{Z}.$$

Donc $n\mathbb{Z} + m\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .

b) Comme $n\mathbb{Z} + m\mathbb{Z}$ est un sous-groupe de \mathbb{Z} , alors il est de la forme $d\mathbb{Z}$ avec $d \in \mathbb{N}$. Montrons que $d = \operatorname{pgcd}(n, m)$. D'après le théorème de Bézout, il existe $u, v \in \mathbb{Z}$ tels que $nu + mv = \operatorname{pgcd}(n, m)$, donc $\operatorname{pgcd}(n, m) \in n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$. Par suite, $d|\operatorname{pgcd}(n, m)$. De plus n = n.1 + m.0 et m = n.0 + m.1, donc $n, m \in n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$, donc d|n et d|m. Ainsi, d est un diviseur commun positif de n, m qui est inférieur ou égal à $\operatorname{pgcd}(n, m)$ (car d positif et $d|\operatorname{pgcd}(n, m)$) donc $d = \operatorname{pgcd}(n, m)$.

Exercice 2. Théorème de Lagrange

Soit (G, \cdot) un groupe fini et H un sous-groupe de G.

- 1. Montrer que pour tout $a \in G$, H et $aH = \{ah; h \in H\}$ ont le même nombre d'éléments.
- 2. Soient $a, b \in G$. Démontrer que aH = bH ou $aH \cap bH = \emptyset$.
- 3. En déduire que le cardinal de H divise le cardinal de G.

Correction

- 1. Soit $f: H \to aH$ définie par f(h) = ah. Il s'agit clairement d'une surjection de H sur aH. De plus, si $ah_1 = ah_2$, alors $h_1 = h_2$ car a est inversible, et donc f est aussi injective. f est donc une bijection de H sur aH; ces deux ensembles ont le même nombre d'éléments.
- 2. Supposons que $aH \cap bH \neq \emptyset$ et prouvons que aH = bH. Par symétrie, il suffit de prouver que $aH \subset bH$. Soit $x \in aH \cap bH$, $x = ah_1 = bh_2$. Prenons $y = ah \in aH$. Alors $a = bh_2h_1^{-1}$ et donc $y = bh_2h_1^{-1}h \in bH$.

3. La réunion des ensembles aH est clairement égale à G (si $x \in G$, il est dans xH). On ne garde que les aH deux à deux disjoints et par les deux questions précédentes, on réalise ainsi une partition de G avec des ensembles qui ont tous le même cardinal, à savoir le cardinal de H. Si k est le nombre d'ensembles nécessaires pour réaliser cette partition, on a

$$k$$
card $(H) =$ card (G)

et donc le cardinal de H divise celui de G.

2. Exercices basiques

a. Ordre d'un élément dans un groupe

Exercice 3.

Quel est l'ordre de $\bar{9}$ dans $\mathbb{Z}/12\mathbb{Z}$?

Correction.

On a (tenant compte du fait que la loi est notée additivement):

$$2 \times \bar{9} = \bar{6}, \ 3 \times \bar{9} = \bar{3}, \ 4 \times \bar{9} = 0.$$

 $\bar{9}$ est donc d'ordre 4.

Exercice 4.

Soit G un groupe et $x \in G$ d'ordre n. Quel est l'ordre de x^2 ?

Correction

D'abord, on remarque que x^2 est d'ordre fini, car $(x^2)^n = (x^n)^2 = e^2 = e$. De plus, son ordre que nous allons noter d divise n. Distinguons alors deux cas :

- Si n est pair et s'écrit 2p, alors $(x^2)^p = x^n = e$, et donc l'ordre de x^2 divise p. De plus, si l'ordre de x^2 est inférieur strict à p, on a $x^{2d} = e$ avec $1 \le 2d < n$, ce qui contredit la définition de l'ordre de x. Donc, si n est pair, l'ordre de x est n/2.
- Si n est impair, alors on a $x^{2d} = e$ et donc n|2d. Mais comme n est premier avec 2, on a n|d. Puisqu'on avait déjà remarqué que d|n, on en déduit que d=n. En résumé, si n est impair, l'ordre de x^2 est n.

Exercice 5.

Soit G un groupe dont tous les éléments (sauf l'élément neutre) sont d'ordre au plus deux. Démontrer que G est abélien.

Correction.

Pour tous $x, y \in G$, on a $x^2y^2 = e = xyxy$ soit en simplifiant à gauche par x et à droite par y, xy = yx.

3. Exercices d'entraînement

a. Ordre d'un élément dans un groupe

Exercice 6.

Soit G un groupe de cardinal 2n.

1. Démontrer que la relation \mathcal{R} définie sur G par

$$x\mathcal{R}y \iff x = y \text{ ou } x = y^{-1}$$

est une relation d'équivalence sur G.

2. En déduire que G admet des éléments d'ordre deux.

Correction.

1. La relation est clairement réflexive et symétrique. De plus, si $x\mathcal{R}y$ et $y\mathcal{R}z$, alors

— si
$$x = y$$
 et $y = z$, on a $x = z$;

- si
$$x = y$$
 et $y = z^{-1}$, on a $x = z^{-1}$;

— si
$$x = y^{-1}$$
 et $y = z$, on a $x = z^{-1}$;

- si
$$x = y^{-1}$$
 et $y = z^{-1}$, on a $x = z$.

Dans tous les cas, on a xRz et la relation est transitive.

- 2. Une classe d'équivalence comporte
 - ou bien un seul élément, si $x = x^{-1}$;
 - ou bien deux élements, si $x \neq x^{-1}$; les éléments sont alors x et x^{-1} .

Il y a au moins une classe d'équivalence avec un seul élément : la classe de l'élément neutre. De plus, les classes d'équivalence forment une partition de G, et G est de cardinal pair. Il doit donc y avoir une autre classe de cardinal 1 (sinon le cardinal de G serait impair). Cette autre classe de cardinal 1 donne un élément x égal à son inverse.

Exercice 7.

Soient G et H deux groupes.

- 1. Montrer que si g est un élément d'ordre p de G et h un élément d'ordre q de H, alors (g,h) est d'ordre ppcm(p,q) dans $G\times H$.
- 2. On suppose que G et H sont cycliques. Démontrer que $G \times H$ est cyclique si et seulement si les ordres de G et H sont premiers entre eux.

Correction.

- 1. On a $(g,h)^n = (g^n,h^n) = (e,e)$ si et seulement si on a à la fois p|n et q|n, donc si et seulement si ppcm(p,q)|n. Ainsi, l'ordre de (g,h) est bien le ppcm de p et q.
- 2. Soit p l'ordre de G et q l'ordre de H. Si $p \land q = 1$, si x est un générateur de G (d'ordre p donc) et si y est un générateur de H (d'ordre q donc), alors (x,y) est d'ordre ppcm(p,q) = pq. Puisque $G \times H$ est de cardinal pq, c'est bien un groupe cyclique. Réciproquement si $G \times H$ est cyclique, soit (g,h) un générateur de $G \times H$. Alors g est un générateur de G et h est un générateur de H. Leur ordre respectif est donc p (resp. q), et par la première question, (g,h) est d'ordre ppcm(p,q). Puisqu'on sait qu'il est d'ordre pq, on a bien ppcm(p,q) = pq qui implique que p et q sont premiers entre eux.

Exercice 8.

Soit G un groupe admettant un nombre fini de sous-groupes.

- 1. Démontrer que tout élément de G est d'ordre fini.
- 2. En déduire que G est fini.

Correction

- 1. Supposons que G admette un élément x d'ordre infini et notons H le sous-groupe engendré par x. Alors H est isomorphe à $(\mathbb{Z},+)$, qui contient une infinité de sous-groupes. On en déduit que H, et donc G, contiennent aussi une infinité de sous-groupes (les sous-groupes engendrés par les x^n , $n \geq 1$, qui ne sont pas deux à deux égaux).
- 2. Pour $x \in G$, notons H_x le sous-groupe engendré par x. Alors on a $G = \bigcup_{x \in G} H_x$. Mais puisque G contient seulement un nombre fini de sous-groupes, il y a un nombre fini de H_x différents, notons-les H_{x_1}, \ldots, H_{x_p} , d'où $G = \bigcup_{i=1}^p H_{x_i}$. Mais chacun des H_{x_i} est fini d'après la question précédente. Donc G est fini.

Exercice 9.

Soit $G = (\mathbb{Z}/20\mathbb{Z})^*$ le groupe des éléments inversibles de $\mathbb{Z}/20\mathbb{Z}$.

- 1. Donner la liste de tous les éléments de G.
- 2. Pour tout $a \in G$, déterminer le sous groupe $\langle a \rangle$ engendré par a.
- 3. Déterminer un ensemble minimal de générateurs de (G,\cdot) .
- 4. (G, \cdot) est-il un groupe cyclique?
- 5. Déterminer tous les sous-groupes de G et, pour chaque sous-groupe, préciser un ensemble de générateurs.
- 6. Parmi les sous-groupes de (G,\cdot) , lesquels sont isomorphes à un groupe additif $(\mathbb{Z}/m\mathbb{Z},+)$?

Correction.

1. Rappelons que par le théorème de Bézout, n est inversible dans $(Z/20\mathbb{Z},\cdot)$ si et seulement si n est premier avec 20. On a donc $G = \{1, 3, 7, 9, 11, 13, 17, 19\}$.

2. On prend un élément et toutes ses puissances, jusqu'à obtenir l'élément neutre 1. On obtient

$$\begin{array}{rcl} <1>&=&\{1\}\\ <3>&=&\{1,3,7,9\}\\ <7>&=&\{1,3,7,9\}\\ <9>&=&\{1,9\}\\ <11>&=&\{1,11\}\\ <13>&=&\{1,9,13,17\}\\ <17>&=&\{1,9,13,17\}\\ <19>&=&\{1,19\}\\ \end{array}$$

- 3. On vient de voir qu'on ne peut pas engendrer le groupe avec un seul élément. Essayons avec deux éléments. C'est facile à voir. Si on prend par exemple 3 et 11, le groupe engendré comprend au moins < 3 > et < 11 >, c'est-à-dire au moins 5 éléments. Comme son ordre doit diviser l'ordre du groupe, il contient au moins 8 éléments, c'est-à-dire que c'est G tout entier. Autrement dit, on a prouvé que < 3,11 >= G et donc $\{3,11\}$ est un ensemble minimal de générateurs de G.
- 4. Aucun élément de G n'engendre seul le groupe. G n'est pas cyclique.
- 5. Les sous-groupes de G sont d'ordre 1,2,4 ou 8. Dans G, il y a un élément d'ordre 1, 4 éléments d'ordre 4 et 3 éléments d'ordre 2. Si on combine deux éléments d'ordre 4 qui n'engendrent pas le même sous-groupe, ou un élément d'ordre 4 avec un élément d'ordre 2 qui n'est pas dans le sous-groupe engendré (comme à la question 3), on obtiendra G tout entier. Reste à voir les sous-groupes engendrés par les éléments d'ordre 2 : on a

$$<11, 19> = \{1, 11, 19, 9\}$$

 $<3, 11> = <3, 13> = <3, 19> = <11, 13> = <13, 19> = G.$

6. Parmi les sous-groupes de G, ceux de la deuxième question sont cycliques, donc isomorphes à $\mathbb{Z}/m\mathbb{Z}$ où m=1,2,4 suivant le cas. Le sous-groupe <11,19> n'est pas cyclique, car il n'est pas engendré par un seul élément. De même, G n'est pas cyclique.

4. Exercices d'approfondissement

a. Ordre d'un élément dans un groupe

Exercice 10.

Soit G un groupe abélien, x et y deux éléments de G d'ordres respectifs p et q.

- 1. On suppose que p et q sont premiers entre eux. Démontrer que xy est d'ordre pq.
- 2. Importance des hypothèses 1 : Si $H = GL_2(\mathbb{R})$, $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, vérifier que A et B sont d'ordre fini, mais que AB n'est pas d'ordre fini.
- 3. Importance des hypothèses 2 : Si p et q ne sont pas supposés premiers entre eux, démontrer que le produit xy n'est pas nécessairement d'ordre pq, ou d'ordre ppcm(p,q).

- 4. Une application:
 - (a) Soit d un diviseur de p. Démontrer qu'il existe un élément d'ordre d dans G.
 - (b) En déduire que G admet des éléments d'ordre ppcm(p,q).
 - (c) On suppose de plus que G est fini. Démontrer que G admet un élément dont l'ordre est le ppcm de l'ordre des éléments de G.

Correction.

1. Notons d l'ordre de xy. Remarquons que $(xy)^{pq} = (x^p)^q (y^q)^p = e$, et donc d|pq. De plus, puisque $(xy)^d = e$, on en déduit que $x^d = y^{-d}$. Il vient alors

$$x^{dq} = (y^{-d})^q = (y^q)^{-r} = e.$$

Ainsi, p|dq et puisque p et q sont premiers entre eux, on en déduit que p|d. De la même façon, on a q|d et en utilisant à nouveau que p et q sont premiers entre eux, on conclut que pq|d. Ainsi, on a bien que d=pq.

2. On vérifie facilement que A est d'ordre 4, que B est d'ordre 3 et que

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

On prouve alors par récurrence que, pour tout $n \geq 1$,

$$(AB)^n = \left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right).$$

AB n'est pas d'ordre fini, et donc l'hypothèse que G est commutatif est importante.

- 3. Si x est un élément d'ordre $n \ge 2$ dans un groupe G, son inverse x^{-1} est aussi d'ordre n, et pourtant le produit xx^{-1} est d'ordre 1, et non d'ordre n ou n^2 !
- 4. Une application:
 - (a) Considérons $a=x^{p/d}$. Alors on a $a^d=x^p=e$. D'autre part, si $a^r=e$, alors $x^{rp/d}=e$ et donc rp/d est un multiplie de p. En particulier r/d est un entier, ce qui signifie que d|r. a est donc bien d'ordre d.
 - (b) Décomposons p et q en facteurs premiers (pour avoir les mêmes facteurs, on s'autorise des exposants nuls) :

$$p = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \ q = p_1^{\beta_1} \cdots p_r^{\beta_r}.$$

On sait qu'alors

$$ppcm(p,q) = p_1^{\max(\alpha_1,\beta_1)} \cdots p_r^{\max(\alpha_r,\beta_r)}.$$

Par la question précédente, il est possible, pour chaque $i=1,\ldots,r$, de fabriquer un élément a_i d'ordre $p_i^{\max(\alpha_i,\beta_i)}$ (on le fabrique à partir de x si $\alpha_i \geq \beta_i$, à partir de y sinon). En utilisant le résultat de la première question et une simple récurrence, le produit $a_1 \ldots a_r$ est bien d'ordre ppcm(p,q).

(c) Notons x_1, \ldots, x_r les éléments de G, d'ordres respectifs q_1, \ldots, q_r . Alors d'après la question précédente, il existe un élément d'ordre $ppcm(q_1,q_2)$. Puis appliquant une nouvelle fois la question précédente, il existe un élément d'ordre $ppcm(ppcm(q_1,q_2),q_3) = ppcm(q_1,q_2,q_3)$. Par une récurrence facile, on construit un élément d'ordre le ppcm que q_1,\ldots,q_r .

Exercice 11.

Soit G un groupe cyclique et soit H un sous-groupe de G. Démontrer que H est cyclique.

Correction.

Soit a un générateur de G. L'ensemble des entiers $p \ge 1$ tels que $a^p \in H$ est non-vide (puisque $a^{\operatorname{card}(G)} = e \in H$). Il contient un plus petit élément que nous noterons n. On va alors prouver que H est le groupe engendré par a^n . Il est d'abord évident que le sous-groupe engendré par a^n est contenu dans H. Réciproquement, soit $x \in H$. x s'écrit $x = a^p$, et il suffit de prouver que p = kn. Effectuons la division euclidienne de p par n : p = qn + r avec $0 \le r < n$. Mais alors :

$$a^p = (a^n)^q a^r \implies a^r = a^p (a^n)^{-q} \in H.$$

Par minimalité de n, ceci n'est possible que si r=0, donc que si p est un multiple de n. Remarquons la proximité entre cette démonstration et celle des sous-groupes de \mathbb{Z} .

Exercice 12.

- 1. Soit G un groupe et H, K deux sous-groupes de G d'ordre des entiers premiers. Démontrer que H = K ou que $H \cap K = \{e\}$.
- 2. Démontrer que dans un groupe d'ordre 35, il existe un élément d'ordre 5 et un élément d'ordre 7.

Correction.

- 1. Soit p l'ordre de H, qui est premier. Puisque un élément de H a un ordre qui divise p, cet ordre ne peut être égal que à 1, si c'est l'élément neutre, ou à p. Autrement dit, tout élément de H autre que l'élément neutre génère H. Il en est de même pour tout élément de K. Ainsi, si $H \cap K$ contient un élément x différent de e, il contient toutes les puissances de x, donc H et K, et H = K.
- 2. Soit G un tel groupe. Ses éléments peuvent être d'ordre 1, 5, 7 ou 35. Si G admet un élément d'ordre 35 (ie G est cyclique), que l'on appelle a, alors a^5 est d'ordre 7 et a^7 est d'ordre 5. Supposons donc que G n'est pas cyclique et qu'il n'admet pas d'éléments d'ordre 7. Alors tous ses éléments, sauf l'élément neutre, sont d'ordre 5, et G est réunion de sous-groupes d'ordre 5. D'après la première question, l'intersection de deux de sous-groupes, quand ils sont distincts, est restreinte à $\{e\}$. Notons G_1, \ldots, G_n ces sous-groupes distincts. Alors chaque G_i s'écrit $G_i = \{e\} \cup H_i$, et les H_1, \ldots, H_n sont deux à deux disjoints. Autrement dit,

$$G = \{e\} \cup H_1 \cup \dots \cup H_n$$

est une partition de G. Comme chaque H_i est de cardinal 4, ceci implique que 35 = 4n + 1. Mais alors 34 serait un multiple de 4, ce qui n'est pas le cas. Le raisonnement est similaire si on suppose que G n'admet pas d'éléments d'ordre 5. On aurait alors 35 = 6m + 1 pour un entier m, ce qui n'est pas le cas puisque 34 n'est pas un multiple de 6.