Corrigé de la feuille d'exercices n°8

Exercices obligatoires: 1, 2, 3, 4, 6, 10, 11, 14, 19.

1. Exercices basiques

a. Continuité des applications linéaires

Exercice 1.

Déterminer si l'application linéaire $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants :

- 1. $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T : (E, ||.||_1) \to (E, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.
- 2. $E = \mathbb{R}[X]$ muni de $\|\sum_{k>0} a_k X^k\| = \sum_{k>0} |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 3. $E = \mathbb{R}_n[X]$ muni de $\|\sum_{k=0}^n a_k X^k\| = \sum_{k=0}^n |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 4. $E = \mathbb{R}[X]$ muni de $\|\sum_{k\geq 0} a_k X^k\| = \sum_{k\geq 0} k! |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 5. $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2}$, $F = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T: (E, ||.||_2) \to (F, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.

Correction.

1. Puisque g est continue sur le segment [0,1], elle y est bornée (et atteint ses bornes). Posons $M=\max_{t\in[0,1]}|g(t)|$. Alors on a

$$||Tf||_1 = \int_0^1 |f(t)g(t)|dt \le M \int_0^1 |f(t)|dt \le M||f||_1.$$

Ceci prouve que T est continue.

2. Supposons que T est continue. Alors il existe C>0 tel que, pour tout $P\in E$, on a $\|TP\|\leq C\|P\|$. Soit $n\geq 0$. Pour $P=X^n$, on trouve

$$TP = nX^{n-1}$$
, d'où $n = ||TP|| < C||P|| = C$.

Ceci est impossible car $\mathbb N$ n'est pas majoré. Donc T n'est pas continue.

3. On peut utiliser deux arguments différents. On peut d'une part remarquer que E est un espace vectoriel de dimension finie, que toute application linéaire entre espaces de dimension finie est continue. On peut aussi utiliser un calcul direct. En effet, soit $P(X) = \sum_{k=0}^{n} a_k X^k \in$

1

E. Alors on a

$$||TP|| = \left\| \sum_{k=1}^{n} k a_k X^{k-1} \right\|$$

$$= \sum_{k=1}^{n} k |a_k|$$

$$\leq n \sum_{k=1}^{n} |a_k| \leq n ||P||.$$

Puisque n ne dépend pas de P (ceci ne dépend que de E), on obtient que T est continue.

4. On va prouver que T est continue par un calcul direct. Prenons en effet $P = \sum_{k=0}^{+\infty} a_k X^k \in E$ (la somme est en fait finie). Alors on a :

$$||TP|| = \left\| \sum_{k=0}^{+\infty} (k+1)a_{k+1}X^{k} \right\|$$

$$= \sum_{k=0}^{+\infty} (k+1)k!|a_{k+1}| = \sum_{k=0}^{+\infty} (k+1)!|a_{k+1}|$$

$$\leq \sum_{k=1}^{+\infty} k!|a_{k}|$$

$$\leq ||P||.$$

Ceci prouve la continuité de P.

5. On prouve que T est continue en utilisant l'inégalité de Cauchy-Schwarz :

$$||Tf|| = \int_0^1 |f(t)||g(t)|dt \le \left(\int_0^1 |f(t)|^2\right)^{1/2} \left(\int_0^1 |g(t)|^2 dt\right)^{1/2} = C||f||_2,$$

avec

$$C = \left(\int_0^1 |g(t)|^2 dt \right)^{1/2}.$$

C est bien un réel fini, car g est continue sur [0,1], donc bornée, et on a $C \leq ||g||_{\infty}$.

Exercice 2.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$. Pour $f \in E$, on pose

$$||f||_1 = \int_0^1 |f(t)|dt,$$

dont on admettra qu'il s'agit d'une norme sur E. Soit ϕ l'endomorphisme de E défini par

$$\phi(f)(x) = \int_0^x f(t)dt.$$

1. Justifier la terminologie : " ϕ est un endomorphisme de E."

- 2. Démontrer que ϕ est continue.
- 3. Pour $n \ge 0$, on considère f_n l'élément de E défini par $f_n(x) = ne^{-nx}$, $x \in [0,1]$. Calculer $||f_n||_1$ et $||\phi(f_n)||_1$.
- 4. On pose $|||\phi||| = \sup_{f \neq 0_E} \frac{||\phi(f)||_1}{||f||_1}$. Déterminer $|||\phi|||$.

Correction

- 1. ϕ est clairement une application linéaire, et il faut juste rappeler que $\phi(f)$, comme primitive d'une fonction continue, est elle-même continue (donc C^1).
- 2. On a

$$|\phi(f)(x)| \le \int_0^x |f(t)| dt \le \int_0^1 |f(t)| dt \le ||f||_1.$$

On en déduit que

$$\|\phi(f)\|_1 \le \int_0^1 \|f\|_1 dt \le \|f\|_1.$$

Ainsi, ϕ est continue.

3. On a $\phi(f_n)(x) = \int_0^x ne^{-nt} dt = 1 - e^{-nx}$. En particulier, $||f_n||_1 = \phi(f_n)(1) = 1 - e^{-n}$. De plus,

$$\|\phi(f_n)\|_1 = \int_0^1 (1 - e^{-nx}) dx = 1 - \frac{1 - e^{-n}}{n}.$$

4. D'après la question 2, pour tout $f \in E$,

$$\|\phi(f)\|_1 \le \|f\|_1$$

et donc $\|\phi\| \le 1$. De plus, on a

$$\|\phi(f_n)\|_1 \le \|\phi\| \|f_n\|_1 \implies 1 - e^{-n} \le \left(1 - \frac{1 - e^{-n}}{n}\right) \|\phi\|.$$

Passant à la limite dans cette inégalité, on conclut que $\|\phi\| \ge 1$, ce qui prouve finalement que $\|\phi\| = 1$.

Exercice 3.

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$. On pose

$$A = \left\{ f \in E; \ f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}.$$

Démontrer que A est une partie fermée de E.

Correction.

Posons, pour $f \in E$, $\phi(f) = f(0)$ et $\psi(f) = \int_0^1 f(t)dt$. Alors ϕ et ψ sont deux formes linéaires. De plus, elles sont continues car, pour tout $f \in E$,

$$|\phi(f)| \le ||f||_{\infty}$$

$$|\psi(f)| \le \int_0^1 |f(t)| dt \le \int_0^1 ||f||_{\infty} dt \le ||f||_{\infty}.$$

De plus, on a $A = \phi^{-1}(\{0\}) \cap \psi^{-1}([1, +\infty[)$. Comme images réciproques de fermés par une application continue, $\phi^{-1}(\{0\})$ et $\psi^{-1}([1, +\infty[)$ sont fermés. Leur intersection est donc un fermé et A est bien fermé.

Exercice 4.

Soit E un espace préhilbertien muni de la norme associée au produit scalaire. Démontrer que l'orthogonal de toute partie A de E est un fermé de E.

Correction

On a $A^{\perp} = \{x \in E; \forall a \in A, \langle x, a \rangle = 0\}$. Posons $f_a(x) = \langle x, a \rangle$. Alors f_a est une application linéaire continue : en effet, pour tout $x \in E$, on a d'après l'inégalité de Cauchy-Schwarz :

$$|\langle x, a \rangle| \le ||a|| \times ||x||.$$

Mais alors, $A^{\perp} = \bigcap_{a \in A} f_a^{-1}(\{0\})$. Ainsi, A^{\perp} est un fermé comme intersection (quelconque) de parties fermées de E.

Exercice 5.

Soit N_1 et N_2 deux normes sur l'espace vectoriel E. Montrer que N_1 et N_2 sont équivalentes si et seulement si $Id: (E, N_1) \to (E, N_2)$ et $Id: (E, N_2) \to (E, N_1)$ sont continues.

Correction

Les deux normes sont équivalentes si et seulement s'il existe a, b > 0 tels que, pour tout $x \in E$, on a $N_1(x) \le aN_2(x)$ et $N_2(x) \le bN_1(x)$. Si on réécrit ces deux inégalités sous la forme

$$N_1(Id(x)) < aN_2(x) \text{ et } N_2(Id(x)) < bN_1(x)$$

alors on en déduit que c'est équivalent à la continuité des deux applications mentionnées dans l'énoncé.

b. Norme subordonnée

Exercice 6.

Soit $E = \mathcal{M}_n(\mathbb{R})$ muni de la norme $\|\cdot\|$ définie, pour tout $A = (a_{i,j})_{1 \leq i,j \leq n} \in E$, par :

$$||A|| = \sup_{i \in [1,n]} \left(\sum_{j=1}^{n} |a_{i,j}| \right).$$

Démontrer que l'application trace $\text{Tr}: E \to \mathbb{R}$ est continue, et calculer sa norme subordonnée.

Correction.

On remarque que l'application trace est linéaire. De plus, soit $A = (a_{i,j})_{1 \le i,j \le n}$. Alors

$$|\text{Tr}(A)| \le \sum_{i=1}^{n} |a_{i,i}|$$

 $\le \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}|$
 $\le \sum_{i=1}^{n} ||A|| \le n||A||.$

Ceci prouve que l'application trace est continue et que $\|Tr\| \le n$. De plus, on a

$$Tr(I_n) = n \text{ et } ||I_n|| = 1.$$

Ainsi, on a exactement ||Tr|| = n.

Exercice 7.

Soit $E = \mathcal{C}([0,1])$ muni de $\|\cdot\|_{\infty}$ et $F = \mathcal{C}^1([0,1])$ muni de $\|f\|_F = \|f\|_{\infty} + \|f'\|_{\infty}$. Soit $T : E \to F$ défini par $Tf(x) = \int_0^x f(t)dt$. Démontrer que T est continue et calculer sa norme subordonnée.

Correction.

On remarque d'abord que Tf, étant une primitive d'une fonction continue, est bien de classe C^1 donc élément de F. De plus, pour tout $x \in [0, 1]$, on a

$$|Tf(x)| \le \int_0^x |f(t)| dt \le x ||f||_{\infty} \le ||f||_{\infty}.$$

De plus, (Tf)'=f et donc $\|(Tf)'\|_{\infty}=\|f\|_{\infty}$. On en déduit que $\|Tf\|_F\leq 2\|f\|_{\infty}$, ce qui prouve que T est continue et que $\|T\|\leq 2$. Nous allons maintenant démontrer que $\|T\|=2$. Puisque $\|(Tf)'\|_{\infty}=\|f\|_{\infty}$, il n'y a (jamais) aucune perte dans cette majoration, et on est amené à chercher une fonction $f\in E$ telle que $\int_0^1 f(t)dt=\|f\|_{\infty}$. Prenons f=1. Alors $\|f\|_{\infty}=1$, Tf(x)=x et donc $\|Tf\|_{\infty}=1$. Il vient $\|Tf\|_F=2\|f\|_{\infty}$, et donc on a effectivement $\|T\|=2$.

Exercice 8.

On munit $\mathbb{R}[X]$ de la norme suivante :

$$\|\sum_{k=0}^{n} a_k X^k\| = \sup\{|a_k|; \ 0 \le k \le n\}.$$

Pour $c \in \mathbb{R}$, on définit la forme linéaire $\phi_c : (\mathbb{R}[X], \|\cdot\|) \to (\mathbb{R}, |\cdot|), P \mapsto P(c)$. Pour quelles valeurs de c la forme linéaire ϕ_c est-elle continue? Dans ce cas, déterminer la norme subordonnée de ϕ_c .

Correction

Supposons d'abord que |c| < 1. Alors, pour $P = \sum_{k=0}^{n} a_k X^k$,

$$|\phi_c(P)| = \left| \sum_{k=0}^n a_k c^k \right| \le \sum_{k=0}^n |a_k| |c|^k \le ||P||_{\infty} \frac{1 - |c|^{n+1}}{1 - |c|}.$$

Puisque |c| < 1, on en déduit que

$$|\phi_c(P)| \le ||P|| \frac{1}{1 - |c|}$$

donc ϕ_c est continue et $\|\phi_c\| \le \frac{1}{1-|c|}$. On va prouver que cette dernière inégalité est en fait une égalité. D'abord, si $c \ge 0$, on considère le polynôme $P_n(X) = 1 + X + \cdots + X^n$. Alors

$$\phi_c(P_n) = 1 + c + \dots + c^n = \frac{1 - c^{n+1}}{1 - c}.$$

Mais $||P_n|| = 1$, et donc on obtient

$$\frac{1 - c^{n+1}}{1 - c} = \|\phi_c(P_n)\| \le \|\phi_c\| \|P_n\| = \|\phi_c\|.$$

Faisant tendre n vers $+\infty$, on conclut que $\|\phi_c\| \ge \frac{1}{1-c}$, ce qui donne l'autre inégalité. Si maintenant c < 0, on effectue le même travail avec le polynôme $Q(X) = 1 - X + X^2 + \dots + (-1)^n X^n$. Pour $c \ge 1$, on a $\phi_c(P_n) = 1 + c + \dots + c^n \ge n + 1$ alors que $\|P_n\| = 1$. L'application ϕ_c ne peut pas être continue. On a le même résultat si $c \le -1$, en considérant cette fois Q_n .

c. Compacité

Exercice 9.

Les propositions suivantes sont-elles vraies ou fausses?

1. L'image réciproque d'un compact par une application continue est un compact.

Correction.

1. C'est faux. Prenons par exemple la fonction $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto 1$. Alors $f^{-1}(\{1\}) = \mathbb{R}$ qui n'est pas compact, alors que $\{1\}$ est compact.

Exercice 10.

Déterminer si les ensembles suivants sont, ou ne sont pas, compacts :

$$\begin{array}{ll} A = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^4 = 1\} & B = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^5 = 2\} \\ C = \{(x,y) \in \mathbb{R}^2, \ x^2 + xy + y^2 \leq 1\} & D = \{(x,y) \in \mathbb{R}^2, \ x^2 + 8xy + y^2 \leq 1\} \\ E = \{(x,y) \in \mathbb{R}^2, \ y^2 = x(1-2x)\}. \end{array}$$

Correction

- A- Puisque $x^2 \ge 0$ et $y^4 \ge 0$, l'équation $x^2 + y^4 = 1$ entraine $x^2 \le 1$ et $y^4 \le 1$. On obtient donc $x \in [-1,1]$ et $y \in [-1,1]$, ie $||(x,y)||_{\infty} \le 1$: A est borné. De plus, f est l'image réciproque de $\{1\}$, qui est fermé, par l'application continue $f(x,y) = x^2 + y^4$. A est donc également fermé. C'est bien une partie compacte de \mathbb{R}^2 .
- B- B n'est pas borné. En effet, pour tout r>0, $(r, \sqrt[5]{2-r^2})$ est élément de B (remarquons que l'on peut prendre la racine 5-ième de tout réel (il ne doit pas être nécessairement positif). Mais $\|(r, \sqrt[5]{2-r^2})\|_{\infty} \ge r$ peut être aussi grand que l'on veut. B n'est donc pas borné, et pas compact.
- C- On sait que $(|x|-|y|)^2 \ge 0$, d'où on tire l'inégalité classique $|xy| \le \frac{x^2+y^2}{2}$, ce qui implique $-xy \le \frac{x^2+y^2}{2}$. Il vient $\frac{x^2+y^2}{2} \le x^2+xy+y^2$. Ainsi, un élément de C vérifie $\|(x,y)\|_2 \le 2$, ce qui prouve que C est borné. Comme C est de plus fermé (c'est l'image réciproque du fermé $|-\infty,1|$ par l'application continue $(x,y)\mapsto x^2+xy+y^2$), C est compact.
- D- D n'est pas borné. En effet, pour tout réel a, le point (a, -a) est dans D car $a^2 8a^2 + a^2 = -6a^2 \le 0 \le 1$. Or, la norme infini de (-a, a) est a et peut donc être choisi aussi grande que l'on veut puisque a est arbitraire. Donc D n'est pas compact.
- E- Remarquons que si (x,y) est élément de E, alors $x(1-2x) \geq 0$. Or, $x(1-2x) \geq 0$ si et seulement si $x \in [0,1/2]$. Et dans ce cas, $x(1-2x) \leq 1/2 \times 1 = 1/2$. Ainsi, si (x,y) est élément de E, on a $x \in [0,1/2]$ et $y \in [-\sqrt{1/2},\sqrt{1/2}]$. L'ensemble E est donc borné. On vérifie aisément qu'il est fermé, comme image réciproque du fermé $\{0\}$ par l'application continue $(x,y) \mapsto y^2 x(1-2x)$. E est donc compact.

Exercice 11.

Soit $E = \mathcal{C}([0, 2\pi])$ muni de la norme $\|\cdot\|_2$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = e^{inx}$.

- 1. Calculer $||f_n f_p||_2$ pour $p, n \in \mathbb{N}$.
- 2. En déduire que $\bar{B}(0,1)$ n'est pas compacte.

Correction.

1. On a, pour tous $n, p \in \mathbb{N}$,

$$||f_n - f_p||_2^2 = \int_0^{2\pi} |e^{inx} - e^{ipx}|^2 dx = \int_0^{2\pi} (2 - 2\cos((n-p)x)) dx.$$

On distingue alors deux cas. Si n = p, alors clairement $||f_n - f_p||_2 = 0$. Sinon, on a

$$\int_0^{2\pi} \cos\left((n-p)x\right) dx = 0$$

et donc $||f_n - f_p||_2 = 2\sqrt{\pi}$.

2. Posons $g_n = f_n/\|f_n\|_2$. Alors (g_n) est une suite de $\bar{B}(0,1)$. De plus, puisque $\|f_n\|_2 = \sqrt{2\pi}$ (cette valeur est indépendante de n), alors pour tout $n \neq p$, on a

$$||g_n - g_p||_2 = \sqrt{2}.$$

Il vient que la suite (g_n) ne peut pas admettre de sous-suite convergente. En effet, si $(g_{\phi(n)})$ était une sous-suite convergente, alors $\|g_{\phi(n+1)} - g_{\phi(n)}\|$ devrait tendre vers 0, ce qui n'est pas le cas. Ainsi, il existe dans $\bar{B}(0,1)$ une suite n'admettant pas de suite extraite convergente. La boule unité fermée n'est pas compacte.

Exercice 12.

Soit K une partie compacte d'un espace vectoriel normé E contenu dans la boule unité ouverte. Démontrer qu'il existe r < 1 tel que K soit contenu dans $\bar{B}(0,r)$.

Correction

Soit $f: K \to \mathbb{R}$, $x \mapsto ||x||$. Alors f est continue et comme K est compact, f est bornée et atteint sa borne supérieure. Soit $x_0 \in K$ tel que $f(x_0) = \sup\{f(x); x \in K\}$. Alors on a $f(x_0) = ||x_0|| < 1$ puisque K est contenu dans la boule unité ouverte. Posons $r = ||x_0|| < 1$. On a donc, pour tout $x \in K$, $||x|| = f(x) \le f(x_0) = e$. C'est bien que K est contenu dans $\bar{B}(0, r)$.

Exercice 13.

Soient K, L deux compacts disjoints d'un espace vectoriel normé E. Démontrer que $d(K, L) = \inf_{x \in K, \ y \in L} \|y - x\| > 0$.

Correction.

Donnons deux rédactions possibles. La première consiste à remarquer que $K \times L$ est compact, comme produit de deux compacts. De plus, l'application $(x,y) \in K \times L \mapsto \|y-x\|$ est continue. Elle atteint donc son minimum. Ainsi, il existe $(x_0,y_0) \in K \times L$ tel que $\|y_0-x_0\| = \inf\{(x,y) \in K\|y-x\|\}$. La deuxième rédaction n'utilise pas la compacité de $K \times L$ (mais, en quelque sorte, la redémontre...). Par définition de la borne inférieure, il existe deux suites (x_n) de K et (y_n) de K telles que $\|x_n-y_n\| \to d(K,L)$. Mais alors la suite (x_n) est une suite du compact K. Elle

admet donc une suite extraite $(x_{\phi(n)})$ convergente vers $x \in K$. La suite $(y_{\phi(n)})$ est une suite du compact L. Elle admet une suite extraite $(y_{\psi(n)})$ qui converge vers $y \in L$. $(x_{\psi(n)})$ est aussi une suite extraite de $(x_{\phi(n)})$ elle converge donc encore vers x. Finalement, par passage à la limite, on a ||x-y|| = d(K,L). Comme K et L sont disjoints, on en déduit que d(K,L) = ||x-y|| > 0.

Exercice 14.

Soit F un fermé, et C un compact de \mathbb{R}^n . On note $G = F + C = \{x + y; x \in F \text{ et } y \in C\}$. Montrer que G est fermé.

Correction.

On va utiliser le critère séquentiel pour les fermés. Soit (z_n) une suite de G qui converge vers z appartenant à \mathbb{R}^n . Il suffit de prouver que $z \in G$. z_n se décompose en $z_n = x_n + y_n$, où $x_n \in F$ et $y_n \in C$. La suite (y_n) qui évolue dans le compact C admet une sous-suite convergente $(y_{\varphi(n)})$ qui converge vers $y \in C$. Maitenant, la suite $x_{\varphi(n)}$, qui s'écrit comme différence de deux suites convergentes, converge vers $x \in \mathbb{R}^n$, et puisque F est fermé, la limite est dans F. Par passage à la limite dans $z_{\varphi(n)} = x_{\varphi(n)} + y_{\varphi(n)}$, z = x + y est dans F + C = G qui est fermé. Remarquons que ce résultat est faux si on suppose simplement que F et C sont fermés. Par exemple, on peut prendre $F = \mathbb{Z}$ et $C = \sqrt{2}\mathbb{Z}$, dans \mathbb{R} . D'après le résultat classique de structure des sous-groupes de \mathbb{R} , F + C est dense dans \mathbb{R} , sans être \mathbb{R} tout entier : en aucun cas, il ne peut donc être fermé.

Exercice 15.

Soit $C = \{(x_1, \dots, x_n) \in \mathbb{R}^n; \ x_1 + \dots + x_n = 1, \ x_1 \geq 0, \dots, x_n \geq 0\}$. Soit également $f : C \to \mathbb{R}^+$ une fonction continue telle que f(x) > 0 pour tout $x \in C$. Démontrer que $\inf_{x \in C} f(x) > 0$.

Correction.

Supposons pour commencer que l'ensemble $\mathcal C$ est compact. Alors on sait que f, qui est continue sur $\mathcal C$, y est bornée et atteint ses bornes. En particulier, il existe $a \in \mathcal C$ tel que $f(a) = \inf_{x \in \mathcal C} f(x)$. Puisque f(a) > 0, le résultat est démontré. Il suffit donc de prouver que $\mathcal C$ est compact. Puisque $\mathcal C$ est une partie de $\mathbb R^n$, il suffit de prouver qu'elle est bornée et fermée. Pour démontrer qu'elle est bornée, on peut choisir de munir $\mathbb R^n$ de la norme $\|\cdot\|_1$ (toutes les normes sur $\mathbb R^n$ sont équivalentes). Mais, alors, si $x \in \mathcal C$, on a

$$||x||_1 = |x_1| + \dots + |x_n| = x_1 + \dots + x_n = 1.$$

Ainsi, \mathcal{C} est bornée. Pour démontrer que \mathcal{C} est compact, on va poser

$$C_0 = \{(x_1, \dots, x_n) \in \mathbb{R}^n; \ x_1 + \dots + x_n = 1\} \text{ et } C_i = \{(x_1, \dots, x_n) \in \mathbb{R}^n; \ x_i \ge 0\}, \ i = 1, \dots, n.$$

Il est clair que $C = C_0 \cap C_1 \cap \dots C_n$. Pour démontrer que C est fermé, il suffit de démontrer que chaque C_i est fermé, puisque l'intersection de parties fermées est fermée. Or, posons $f_0(x) = x_1 + \dots + x_n$ et $f_i(x) = x_i$, $i = 1, \dots, n$. Toutes les fonctions f_i sont continues. De plus,

$$C_0 = f_0^{-1}(\{1\}) \text{ et } C_i = f_i^{-1}([0, +\infty[).$$

Ainsi, chaque C_i est fermé comme image réciproque d'un fermé par une application continue, ce qui achève la preuve de la compacité de C.

Exercice 16.

Soit $f: \mathbb{R}^d \to \mathbb{R}$ une fonction continue telle que $\lim_{\|x\| \to \infty} f(x) = +\infty$. Montrer que f admet un minimum.

Correction.

Soit M un réel tel que M > f(0). Par hypothèse, il existe A > 0 tel que $||x|| \ge A \implies ||f(x)|| \ge M$. Ceci entraine en particulier que :

$$f(0) \le \inf_{\|x\| \ge A} f(x).$$

Ainsi,

$$\inf_{x \in \mathbb{R}^d} f(x) = \inf_{\|x\| \le A} f(x).$$

Maintenant, la boule fermée de centre 0 et de rayon A est compacte dans \mathbb{R}^d , et il suffit d'appliquer le théorème qui dit qu'une fonction continue sur un compact admet un minimum.

Exercice 17.

Soit A une partie compacte d'un espace vectoriel normé, $f:A\to\mathbb{R}$. On suppose que f est localement bornée : pour tout $x\in A$, il existe r>0 et M>0 tels que, pour tout $y\in B(x,r)\cap A$, $|f(y)|\leq M$. Démontrer que f est bornée sur A tout entier.

Correction.

On suppose au contraire que f n'est pas bornée. Ainsi, pour tout $n \ge 1$, il existe $x_n \in A$ tel que $|f(x_n)| \ge n$. Puisque A est compact, il existe $x \in A$ et une suite extraite $(x_{\phi(n)})$ de (x_n) qui converge vers x. Soit r > 0 et M > 0 tels que, pour tout $y \in B(x,r) \cap A$, $|f(y)| \le M$. Puisque $(x_{\phi(n)})$ converge vers x, il existe un entier N tel que, pour $n \ge N$, on a $x_{\phi(n)} \in B(x,r)$. Pour ces entiers n, on a alors

$$\phi(n) \le |f(x_{\phi(n)})| \le M.$$

Faisant tendre n vers l'infini, on trouve une contradiction.

2. Exercices d'entraînement

a. Continuité des applications linéaires

Exercice 18.

Soit $E = \mathbb{R}[X]$, muni de la norme $\|\sum_i a_i X^i\| = \sum_i |a_i|$.

- 1. Est-ce que l'application linéaire $\phi:(E,\|.\|)\to (E,\|.\|),\ P(X)\mapsto P(X+1)$ est continue sur E?
- 2. Est-ce que l'application linéaire $\psi:(E,\|.\|)\to (E,\|.\|), P(X)\mapsto AP$, où A est un élément fixé de E, est continue sur E?

Correction.

1. Supposons ϕ continue. Alors il existe $C \geq 1$ tel que

$$\|\phi(P)\| \le C\|P\|$$

pour tout polynôme P. Prenons le polynôme $P(X) = X^n$. Alors ||P|| = 1. Mais $P(X+1) = (X+1)^n = X^n + nX^{n-1} + \dots$ Ainsi, on obtient

$$n \le ||P(X+1)|| \le C,$$

ce qui impossible si on choisit n assez grand. Ainsi, ϕ n'est pas continue.

2. Écrivons $A(X)=\sum_{j=0}^p b_j X^j$ et $P(X)=\sum_{i=0}^n a_i X^i$. Alors $AP(X)=\sum_{k=0}^{n+p} c_k X^k$ avec

$$c_k = \sum_{i+j=k} a_i b_j.$$

Notons $M = \max_{j=0,\dots p} |b_j|$. On a donc

$$|c_k| \le M \sum_{i=\max(0,k-p)}^k |a_i|,$$

ce qui entraîne

$$||AP||_1 \le M \sum_{k=0}^{n+p} \sum_{i=\max(0,k-p)}^{k} |a_i|.$$

Fixons i_0 dans $\{0,\ldots,n\}$. S'il apparait dans la somme $\sum_{i=\max(k-p,0)}^k |a_i|$, c'est que $k-p \le i_0 \le k$. En particulier, il apparait au plus k-(k-p)+1=(p+1) fois. On en déduit que

$$||AP||_1 \leq M(p+1)||P||_1$$

ce qui prouve que ψ est continue.

Exercice 19.

Soit E l'espace vectoriel des suites $(a_n)_{n\geq 1}$ de nombres complexes telle que $\sum_{n\geq 1} |a_n|$ converge. On pose, pour $a=(a_n)\in E$,

$$||a|| = \sum_{n=1}^{+\infty} |a_n|.$$

1. Démontrer que $\|\cdot\|$ définit une norme sur E.

2. On pose $F=\{a\in E;\ \sum_{n\geq 1}a_n=1\}.$ F est-il ouvert ? fermé ? borné ?

Correction.

1. On suit la méthode classique. Si $a=(a_n)$ et $b=(b_n)$ sont éléments de E et $\lambda \in \mathbb{R}$, alors on a pour tout N,

$$\sum_{n=1}^{N} |a_n + b_n| \le \sum_{n=1}^{N} (|a_n| + |b_n|) \le \sum_{n=1}^{N} |a_n| + \sum_{n=1}^{N} |b_n| \le ||a|| + ||b||.$$

Faisant tendre N vers l'infini, on en déduit que

$$||a+b|| \le ||a|| + ||b||.$$

Une preuve similaire donne $\|\lambda a\| = |\lambda| \times \|a\|$ tandis que si $\|a\| = 0$, alors on a nécessairement $0 \le |a_n| \le \|a\| = 0$ pour tout $n \ge 1$ et donc a = 0.

2. Posons $\phi(a) = \sum_{n \geq 1} a_n$. Alors ϕ est bien défini sur E (car la convergence absolue entraine la convergence) et ϕ est linéaire. Démontrons que ϕ est continue. Pour cela, on remarque que

$$|\phi(a)| = \left| \sum_{n \ge 1} a_n \right| \le \sum_{n \ge 1} |a_n| \le ||a||.$$

Ceci démontre que ϕ est continue, et comme $F=\phi^{-1}(\{1\})$, F est l'image réciproque d'un fermé par une application continue, donc F est fermé. Par ailleurs, F n'est ni ouvert, ni borné. Il n'est pas ouvert, car prenons $a=(1,0,0,\ldots)$ qui est un élément de F. Alors, pour tout $\delta>0$, $a+\delta a\notin F$, et donc F n'est pas un voisinage de son élément a. En particulier, F n'est pas ouvert. F n'est pas non plus borné. En effet, prenons la suite $a(p)=(p+1,-p,0,0,\ldots)$. Alors, pour chaque p, a(p) est élément de F. Or, $||a(p)|=2p+1\to +\infty$ si $p\to +\infty$. Donc F n'est pas bornée.

Exercice 20.

Soit E un espace vectoriel normé et $\mathcal{L}_c(E)$ l'ensemble des applications linéaires continues sur E. Pour $u \in \mathcal{L}_c(E)$, on pose

$$||u|| = \sup\{||u(x)||; ||x|| \le 1\}.$$

- 1. Démontrer que ceci définit une norme sur $\mathcal{L}_c(E)$.
- 2. Démontrer que, pour tout $x \in E$ et tout $u \in \mathcal{L}_c(E)$, on a

$$||u(x)|| \le ||u|| \times ||x||.$$

En déduire que, pour tous $u, v \in \mathcal{L}_c(E)$, alors $||u \circ v|| \le ||u|| \times ||v||$.

Correction

1. Soit $u \in \mathcal{L}_c(E)$. D'abord, si u = 0, on a bien ||u|| = 0. Réciproquement, si ||u|| = 0, alors ||u(x)|| = 0 pour tout $x \in E$ tel que ||x|| = 1. Considérons alors $y \in E$. Si y = 0, on a bien u(y) = 0. Si $y \neq 0$, considérons x = y/||y||. Alors ||x|| = 1, donc u(x) = 0, donc par homogénéité de u, u(x) = 0 et u est bien nulle. Considérons maintenant $\lambda \in \mathbb{R}$. Alors

$${ \|\lambda u(x)\|; \|x\| = 1 } = |\lambda| \times { \|u(x)\|; \|x\| = 1 }.$$

On en déduit que $\|\lambda u\| = |\lambda| \times \|u\|$. Finalement, soient $u, v \in \mathcal{L}_c(E)$. Alors, pour tout $x \in E$ avec $\|x\| = 1$, on a

$$||u(x) + v(x)|| \le ||u(x)|| + ||v(x)|| \le ||u|| + ||v||.$$

Passant au sup sur x, on obtient bien que $||u+v|| \le ||u|| + ||v||$. Ainsi, la formule

$$||u|| = \sup\{||u(x)||; ||x|| \le 1\}$$

définit bien une norme sur $\mathcal{L}_c(E)$.

2. Soit $x \in E$. Si x = 0, la formule est claire sinon posons $y = x/\|x\|$. Alors on a $\|u(y)\| \le \|u\|$ ce qui implique facilement par homogénéité que $\|u(x)\| \le \|u\| \times \|x\|$. Soit maintenant $u, v \in \mathcal{L}_c(E)$. Alors, pour tout $x \in E$ avec $\|x\| = 1$, on a

$$||u(v(x))|| \le ||u|| \times ||v(x)|| \le ||u|| \times ||v||.$$

Passant au sup en x, on en déduit bien que $||u \circ v|| \le ||u|| \times ||v||$.

Exercice 21.

Soit E un espace vectoriel normé et $u \in \mathcal{L}(E)$. Démontrer que u est continue si et seulement si $\{x \in E; \|u(x)\| = 1\}$ est fermé.

Correction.

Notons $F = \{x \in E; ||u(x)|| = 1\}$. D'une part, si u est continue, alors $F = u^{-1}(\{1\})$ est un fermé. Réciproquement, supposons que u ne soit pas continue. Alors il existe une suite (x_n) de $E, x_n \neq 0$, telle que $||u(x_n)||/||x_n|| \to +\infty$. Posons $y_n = \frac{x_n}{||u(x_n)||}$. Alors $||y_n|| \to 0$ et $||u(y_n)|| = 1$. Ainsi, chaque y_n est élément de F. Si F était fermé, alors 0 serait élément de E, ce qui n'est pas le cas. Donc F n'est pas fermé, ce qui démontre que u est continue si et seulement si F est fermé.

Exercice 22.

Soit E un espace vectoriel normé et u un endomorphisme de E vérifiant, pour tout $x \in E$, $||u(x)|| \le ||x||$. Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u^k.$$

- 1. Simplifier $v_n \circ (u Id)$.
- 2. Montrer que $ker(u Id) \cap Im(u Id) = \{0\}.$

3. On suppose désormais que E est de dimension finie. Démontrer que

$$\ker(u - Id) \oplus \operatorname{Im}(u - Id) = E.$$

4. Soit p la projection sur $\ker(u-Id)$ parallèlement à $\operatorname{Im}(u-Id)$. Démontrer que, pour tout $x \in E, v_n(x) \to p(x)$.

Correction.

1. On a, par télescopage,

$$\sum_{k=0}^{n} u^{k}(u - Id) = u^{n+1} - Id$$

et donc $v_n = \frac{1}{n+1}(u^{n+1} - Id)$.

- 2. Soit $y \in \ker(u Id) \cap \operatorname{Im}(u Id)$. Alors il existe $x \in E$ tel que y = (u Id)(x). On en déduit que $v_n(y) = \frac{1}{n+1}(u^{n+1}(x) x)$. Puisque $||u^{n+1}(x)|| \leq ||x||$, on obtient que $(v_n(y))$ tend vers 0. Mais d'autre part, on sait aussi que u(y) = y, et donc, pour tout entier n, on a $v_n(y) = y$. Par unicité de la limite, y = 0.
- 3. C'est une conséquence immédiate du théorème du rang et du résultat de la question précédente.
- 4. Soit $x \in E$, écrivons x = y + z avec $y \in \ker(u Id)$ et $z \in \operatorname{Im}(u Id)$. Alors le calcul effectué à la deuxième question montre que $v_n(y) = y$ et que $v_n(z)$ tend vers 0. Ainsi, $(v_n(x))$ tend vers y qui est bien égal à p(x).

Exercice 23.

Soit E un espace vectoriel normé (sur \mathbb{R}) et soit $\phi: E \to \mathbb{R}$ une forme linéaire non identiquement nulle. Le but de l'exercice est de démontrer que ϕ est continue si et seulement si le noyau de ϕ est fermé.

- 1. Démontrer le sens direct.
- 2. Réciproquement, on suppose que le noyau de ϕ , noté H, est fermé. On fixe $y \in E$ tel que $\phi(y) = 1$.
 - (a) Démontrer que $\phi^{-1}(\{1\})$ est fermé.
 - (b) En déduire qu'il existe r > 0 tel que $B(0,r) \cap \phi^{-1}(\{1\}) = \emptyset$.
 - (c) Démontrer que $x \in B(0,r) \implies |\phi(x)| \le 1$.
 - (d) Conclure.

Correction.

- 1. Si ϕ est continue, alors $\ker \phi = \phi^{-1}(\{0\})$ est fermé comme image réciproque d'un fermé par une application continue.
- 2. (a) Fixons $y \in E$ tel que $\phi(y) = 1$ et notons $H = \ker \phi$. Soit $z \in E$. On a

$$\phi(z) = 1 \iff \phi(z) = \phi(y) \iff \phi(z - y) = 0 \iff z - y \in H \iff z \in y + H.$$

Ainsi, $\phi^{-1}(\{1\}) = y + H$ est fermé puisque c'est lui translaté de H qui est fermé.

- (b) On sait que $0 \notin \phi^{-1}(\{1\})$ qui est fermé. Il existe donc r > 0 tel que $B(0, r) \cap \phi^{-1}(\{1\}) = \emptyset$.
- (c) Supposons qu'il existe $x \in B(0,r)$ tel que $|\phi(x)| > 1$. Alors $\phi(\lambda x) = \lambda \phi(x) = 1$ pour $\lambda = 1/\phi(x) \in]-1,1[$. Mais alors $z = \lambda x \in B(0,r)$ et $\phi(z) = 1$, une contradiction.
- (d) Il suffit de raisonner par homogénéité. Si ||x|| < 1 alors ||rx|| < r et donc $|\phi(rx)| \le 1$. On en déduit que $|\phi(x)| \le 1/r$ et donc que ϕ est continue avec $||\phi|| \le 1/r$.

b. Compacité

Exercice 24.

Soient K, L deux parties compactes d'un espace vectoriel normé E. On pose $K + L = \{x + y; x \in K, y \in L\}$. Démontrer que K + L est une partie compacte de E.

Correction.

Soit (z_n) une suite de K+L. Alors pour chaque n, z_n s'écrit $z_n = x_n + y_n$ avec $x_n \in K$ et $y_n \in L$. La suite (x_n) est une suite de K: elle admet donc une suite extraite $(x_{\phi(n)})$ qui converge vers $x \in K$. De plus, la suite $(y_{\phi(n)})$ est une suite de L. Elle admet donc une suite extraite $(y_{\psi(n)})$ qui converge vers $y \in L$. Comme la suite $(x_{\psi(n)})$ est extraite de $(x_{\phi(n)})$, elle converge également vers x. Ainsi, la suite $(z_{\psi(n)})$ converge vers $x+y \in K+L$. Ce dernier ensemble est bien compact. Remarquons ici l'importance de procéder à des extractions successives.

Exercice 25.

Soit E un espace vectoriel normé de dimension n. Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de F, et on note $\operatorname{Conv}(F)$, le plus petit sous-ensemble convexe (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1, \ldots, \lambda_{n+1}) \in (\mathbb{R}_+)^{n+1}$ et on admet que $\operatorname{Conv}(F)$ est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1} \lambda_i x_i$, où $x_1, \ldots, x_{n+1} \in F$ et $(\lambda_1, \ldots, \lambda_{n+1}) \in \mathcal{H}$. Le but de l'exercice est de démontrer que si K est une partie compacte de E, alors $\operatorname{Conv}(K)$ est aussi une partie compacte de E.

- 1. Démontrer que \mathcal{H} est une partie compacte de \mathbb{R}^{n+1} .
- 2. Définir une application continue $\phi : \mathbb{R}^{n+1} \times E^{n+1} \to E$ telle que $\operatorname{Conv}(K) = \phi(\mathcal{H} \times K^{n+1})$.
- 3. Conclure.

Correction.

1. Notons $H = \{(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n+1}; x_1 + \dots + x_{n+1} = 1\}$. Alors H est fermé : c'est l'image réciproque de $\{1\}$ par l'application continue (car linéaire en dimension finie) $\phi(\lambda_1, \dots, \lambda_{n+1}) = \lambda_1 + \dots + \lambda_{n+1}$. De plus, si $E_i = \{(\lambda_1, \dots, \lambda_{n+1} \in \mathbb{R}^{n+1}; x_i \geq 0\}$, alors E_i est également fermé. Ainsi, $\mathcal{H} = H \cap E_1 \cap \dots \cap E_n$ est fermé comme intersection

de fermés. De plus, \mathcal{H} est borné. En effet, si $u = (\lambda_1, \dots, \lambda_{n+1}) \in \mathcal{H}$, alors

$$||u|| = |\lambda_1| + \dots + |\lambda_{n+1}| = \lambda_1 + \dots + \lambda_{n+1} = 1.$$

Ainsi, \mathcal{H} est un fermé et borné de l'espace \mathbb{R}^{n+1} : \mathcal{H} est compact.

2. Posons

$$\phi((\lambda_1, \dots, \lambda_{n+1}), (x_1, \dots, x_{n+1})) = \sum_{i=1}^{n+1} \lambda_i x_i.$$

Alors ϕ est une application bilinéaire définie sur un produit de deux espaces de dimension finie. Ainsi, ϕ est continue. De plus, d'après le rappel donné par l'énoncé, on a $\operatorname{Conv}(K) = \phi(\mathcal{H} \times K^{n+1})$.

3. L'ensemble $\mathcal{H} \times K^{n+1}$ est compact comme produit d'un nombre fini de compacts. L'image d'un compact par une application continue étant un compact, on en déduit que $\operatorname{Conv}(K)$ est compact.

Exercice 26.

Soit $E = \mathbb{R}^d$ muni d'une norme $\|\cdot\|$, et A une partie non vide de E. On définit la distance d'un élément x_0 de E à une partie A de E, notée $d(x_0, A)$, par la formule

$$d(x_0, A) = \inf_{x \in A} ||x - x_0||.$$

- 1. Supposons A compact. Montrer que pour tout $x_0 \in E$ il existe $y \in A$ tel que $d(x_0, A) = \|y x_0\|$.
- 2. Montrer que le résultat est encore vrai si on suppose seulement que A est fermé. (On remarquera que pour toute partie B de A on a $d(x_0, B) \ge d(x_0, A)$.)
- 3. Montrer que l'application qui à x_0 associe $d(x_0, A)$ est continue sur E (sans aucune hypothèse sur A).
- 4. En déduire que si A est un fermé de E et B un compact de E tels que A et B sont disjoints, alors il existe une constante $\delta > 0$ telle que

$$||a - b|| \ge \delta$$
 $\forall (a, b) \in A \times B$.

5. Montrer par un contre-exemple que le résultat est faux si on suppose seulement que A et B sont deux fermés disjoints.

Correction

- 1. La fonction $x \mapsto \|x x_0\|$ est continue, à valeurs réelles. Elle atteint sa borne inférieure sur tout compact.
- 2. On fixe un point $z \in A$, et on pose $B = A \cap \overline{B}(x_0, ||x_0 z||)$. Puisque $B \subset A$, il est clair que $d(x_0, B) \ge d(x_0, A)$. Maintenant, si $y \in B \setminus A$, on a $||y x_0|| \ge ||z x_0|| \ge d(x_0, B)$. Ceci prouve que $d(x_0, A) = d(x_0, B)$. Maintenant, B est fermé comme intersection de deux fermés, et est compact car il est aussi fermé. Il existe $y \in B \subset A$ tel que :

$$d(x_0, A) = d(x_0, B) = ||y - x_0||.$$

3. On fixe x_0 et x_1 deux point de E, et y dans A. D'après l'inégalité triangulaire :

$$||x_0 - y|| - ||x_1 - y|| \le ||x_0 - x_1||.$$

On obtient ensuite:

$$d(x_0, A) \le ||x_0 - y|| \le ||x_0 - x_1|| + ||x_1 - y||.$$

On prend enfin la borne inf pour y dans A:

$$d(x_0, A) \le ||x_0 - x_1|| + d(x_1, A) \implies d(x_0, A) - d(x_1, A) \le ||x_0 - x_1||.$$

Par symétrie du rôle joué par x_0 et x_1 , on a finalement :

$$|d(x_0, A) - d(x_1, A)| \le ||x_0 - x_1||.$$

L'application $x_0 \mapsto d(x_0, A)$ est 1-lipschitzienne, donc continue.

4. L'application étant continue sur le compact B, elle y atteint son minimum, disons en $y_0 \notin A$. Puisque A est fermé, $d(y_0, A) > 0$, et donc :

$$\forall a \in A, \forall b \in B, ||a - b|| \ge d(b, A) \ge d(y_0, A) > 0.$$

5. Soit $A = \{(x,y) \in \mathbb{R}^2; y = x\}$ et $B = \{(x,y) \in \mathbb{R}^2; y = x + e^{-x}\}$. A et B sont deux fermés disjoints, mais ils ont des points infiniment proches.

Exercice 27.

Soit E un espace vectoriel normé et (K_n) une suite de parties compactes de E telle que, pour chaque entier n, on $K_{n+1} \subset K_n$. On pose $K = \bigcap_{n \ge 1} K_n$.

- 1. Démontrer que $K \neq \emptyset$.
- 2. Soit U un ouvert contenant K. Démontrer qu'il existe un entier n tel que $K_n \subset U$.

Correction.

- 1. Pour tout entier n, considérons $x_n \in K_n$. Alors (x_n) est une suite du compact K_0 . Elle admet donc une sous-suite $(x_{\phi(n)})$ qui converge vers x. Mais alors, pour tout entier p et tout $n \geq p$, on a $\phi(n) \geq n \geq p$ et donc $x_{\phi(n)} \in K_p$. Puisque K_p est fermé, $x \in K_p$. Ceci étant vrai pour tout $p \geq 0$, on en déduit que $x \in K$ et donc que K est non vide.
- 2. Supposons que ceci soit faux. Alors pour tout entier n, il existe $x_n \in K_n \cap U^c$. Mais alors, comme à la question précédente, on peut extraire une sous-suite $(x_{\phi(n)})$ qui converge vers $x \in K$. Mais, puisque U^c est fermé, on a aussi que $x \in U^c$. Ceci contredit que $K \subset U$.

Exercice 28.

Soit Ω un ouvert de \mathbb{R}^n . Démontrer qu'il existe toujours une suite exhaustive de compacts $(K_j)_{j\geq 1}$ qui vérifie

1.
$$\forall j \geq 1, K_j \subset \Omega$$

- 2. $\forall j \geq 1, K_j \subset K_{j+1}$
- 3. $\Omega = \bigcup_{j>1} K_j$.

Correction.

Posons $L_j = \left\{x \in \mathbb{R}^n; \; \operatorname{dist}(x,\Omega^c) \geq \frac{1}{j}\right\}$. Alors L_j est fermé : si on note $F = \Omega^c$, l'application $x \mapsto d(x,F)$ est continue et L_j est l'image réciproque du fermé $[1/j,+\infty[$ par cette application). Donc $K_j = \bar{B}(O,j) \cap L_j$ est compact, puisque c'est un fermé et borné de \mathbb{R}^n . La suite $(K_j)_{j \geq 1}$ vérifie les conclusions demandées :

- 1. Si $x \in K_j$, alors $x \in L_j$ et donc $\operatorname{dist}(x, \Omega^c) > 0$. En particuler, $x \notin \Omega^c$, c'est-à-dire $x \in K$.
- 2. Si $x \in K_j$, alors $||x|| \le j \implies ||x|| \le j+1$ et $d(x,F) \ge \frac{1}{i} \ge \frac{1}{i+1}$.
- 3. On a $\bigcup_{j\geq 1} K_j \subset \Omega$. Réciproquement, si $x\in \Omega$, puisque Ω est ouvert, il existe $\delta>0$ tel que $B(x,\delta)\subset \Omega$. En particulier, $\mathrm{dist}(x,F)\geq \delta$. Si on choisit $j\geq 1$ tel que $j\geq \|x\|$ et $\frac{1}{j}\leq \delta$, alors on a $x\in K_j$ ce qui prouve que $\Omega\subset \bigcup_{j\geq 1} K_j$.

Exercice 29.

Soit $f:\mathbb{R}^n \to \mathbb{R}$ une fonction continue. Montrer que les trois conditions suivantes sont équivalentes :

- 1. $\forall M > 0$, $\exists R > 0$ tel que $||x|| > R \implies |f(x)| > M$.
- 2. Pour toute partie bornée B de \mathbb{R} , $f^{-1}(B)$ est une partie bornée de \mathbb{R}^n .
- 3. Pour toute partie compacte K de \mathbb{R} , $f^{-1}(K)$ est une partie compacte de \mathbb{R}^n .

Correction.

- 1. \implies 2. : Soit M tel que $y \in B \implies |y| \le M$. Soit R > 0 associé à ce M par la propriété 1. Si $x \in f^{-1}(B)$ et ||x|| > R, par (i), on aurait |f(x)| > M, ce qui est impossible puisque $f(x) \in B$.
- $-2. \implies 3.: K$ étant compacte, elle est fermée bornée. Ceci entraı̂ne que $f^{-1}(K)$ est fermé, car l'image réciproque d'un fermé par une application continue est fermé, et que $f^{-1}(K)$ est borné, par (ii). Les compacts de \mathbb{R}^n étant exactement les fermés bornés, on a le résultat.
- $-3. \implies 1.$: Supposons que ce ne soit pas le cas. Alors, il existe M et une suite (x_n) de \mathbb{R}^n telle que $||x|| \ge n$ et $|f(x)| \le M$. Mais alors l'image réciproque de [-M, M] contient la suite (x_n) , elle n'est pas bornée et n'est par conséquent pas compacte.

Exercice 30.

Une fonction f définie sur une partie $A \subset \mathbb{R}^n$ à valeurs dans \mathbb{R}^n est dite localement lipschitzienne si, pour tout $x \in A$, il existe un voisinage V_x de x et une constante C > 0 telle que :

$$\forall (y, z) \in A \cap V_x, \|f(y) - f(z)\| \le C\|y - z\|.$$

Montrer qu'une fonction localement lipschitzienne sur une partie compacte K de \mathbb{R}^n est en fait

lipschitzienne.

Correction.

On raisonne par l'absurde et on suppose que f n'est pas lipschitzienne sur K. Pour chaque entier n, on peut donc trouver deux éléments y_n et z_n de K tels que

$$||f(y_n) - f(z_n)|| > n||y_n - z_n||.$$

Remarquons que, puisque f est bornée (elle est continue sur le compact K), disons par M, on a

$$||y_n - z_n|| \le \frac{2M}{n} \tag{1}$$

et donc $||y_n - z_n|| \to 0$. D'autre part, puisqu'elle vit dans le compact K, la suite (y_n) admet une sous-suite $(y_{\phi(n)})$ qui converge vers $x \in K$. D'après l'inégalité (1),il en est de même pour $(z_{\phi(n)})$. Mais on sait que f est localement lipschitzienne en x et donc il existe C > 0 et un voisinage V_x de x tels que

$$\forall (y, z) \in K \cap V_x, \|f(y) - f(z)\| \le C\|y - z\|.$$

Pour n assez grands, $y_{\phi}(n)$ et $z_{\phi(n)}$ sont éléments de $K \cap V_x$. On en déduit

$$n||y_{\phi(n)} - z_{\phi(n)}|| < ||f(y_{\phi(n)}) - f(z_{\phi(n)})|| \le C||y_{\phi(n)} - z_{\phi(n)}||.$$

Faisant tendre n vers $+\infty$, c'est manifestement une contradiction!

Exercice 31.

Soient A, B deux parties d'un espace vectoriel normé $E, f: A \to B$ une application et $G = \{(x, f(x)); x \in A\}$ son graphe.

- 1. On suppose que f est continue. Démontrer que son graphe est fermé.
- 2. On suppose de plus que B est compact et que le graphe de f est fermé. Démontrer que f est continue (on pourra utiliser le théorème suivant : une suite d'éléments d'une partie compacte converge si et seulement si elle admet une unique valeur d'adhérence.)

Correction

- 1. Soit $(x_n, f(x_n))$ une suite de G qui converge vers $(x, y) \in A \times B$. Alors, puisque f est continue, on sait que $(f(x_n))$ converge vers f(x) et donc que y = f(x). Ainsi, $(x, y) \in G$ qui est fermé.
- 2. Soit $x \in A$ et (x_n) une suite de A qui converge vers x. Il s'agit de démontrer que $(f(x_n))$ converge vers f(x). Pour cela, puisque $(f(x_n))$ est une suite du compact B, il suffit de démontrer que f(x) est sa seule valeur d'adhérence. Soit y une valeur d'adhérence de $(f(x_n))$. Alors il existe une fonction $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(f(x_{\varphi(n)}))$ converge vers y. Mais $(x_{\varphi(n)})$ converge aussi vers x. Comme la suite $(x_{\varphi(n)}, f(x_{\varphi(n)}))$ est une suite du fermé G, sa limite est aussi dans G. Autrement dit, y = f(x), ce qu'il fallait démontrer.

3. Exercices d'approfondissement

a. Continuité des applications linéaires

Exercice 32.

Soit $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$. On considère l'opérateur de dérivation $D: E \to E, f \mapsto f'$. Montrer que, quelle que soit la norme N dont on munit E, D n'est jamais une application linéaire continue de (E,N) dans (E,N).

Correction.

Pour $a \in \mathbb{R}$, la fonction $f_a(x) = e^{ax}$ est dans E, et elle vérifie $Df_a = af_a$. Or, si D était continue pour la norme N, il existerait une constante C > 0 telle que

$$N(D(f_a)) \le CN(f_a)$$

pour tout $a \in \mathbb{R}$. On obtiendrait alors que, pour tout $a \in \mathbb{R}$,

$$|a|N(f_a) \le CN(f_a) \implies |a| \le C.$$

C'est bien sûr impossible, et D n'est pas continue sur (E, N).

b. Norme subordonnée

Exercice 33.

Soit I = [a, b] un intervalle de \mathbb{R} . On munit $\mathcal{C}(I)$ de la norme $\|.\|_{\infty}$. On dit qu'une forme linéaire $u : \mathcal{C}(I) \to \mathbb{R}$ est positive si $u(f) \ge 0$ pour tout $f \in C(I)$ vérifiant $f(x) \ge 0$ si $x \in I$.

- 1. Démontrer que, pour toute forme linéaire $u: \mathcal{C}(I) \to \mathbb{R}$ positive, $|u(f)| \le u(|f|)$.
- 2. Soit e la fonction définie par e(x) = 1 pour tout $x \in I$. Déduire de la question précédente que toute forme linéaire positive est continue, et calculer ||u|| en fonction de u(e).

Correction.

- 1. Remarquons que $|f| \ge f$, et donc $|f| f \ge 0$. On en déduit que $u(|f|) \ge u(f)$. De même, on a $|f| \ge -f$, soit $|f| + f \ge 0$ et donc $u(|f|) \ge u(-f) = -u(f)$. Finalement, on obtient bien que $|u(f)| \le u(|f|)$.
- 2. On sait que $|f(x)| \leq ||f||_{\infty}$, ce qui s'écrit encore $||f||_{\infty}e |f| \geq 0$. Ainsi, on a

$$|u(f)| \le u(|f|) \le u(||f||_{\infty}e) \le u(e)||f||_{\infty}.$$

Ceci prouve que u est continue, avec $||u|| \le u(e)$. De plus, pour f = e, on a exactement $u(f) = u(e)||e||_{\infty}$, ce qui prouve qu'en réalité ||u|| = u(e).

c. Compacité

Exercice 34.

Soit E un espace vectoriel normé, B la boule unité fermée de E et S la sphère unité. Démontrer que B est compact si et seulement si S est compact.

Correction

Un sens est assez facile. En effet, si B est compact, alors S est une partie fermée (pourquoi?) de l'ensemble compact B. C'est donc également un compact. Réciproquement, si S est compact, prouvons que B est compact. Pour cela, considérons (x_n) une suite d'éléments de B. Si (x_n) admet une sous-suite qui converge vers 0, alors il n'y a rien à prouver. Sinon, pour tout n assez grand, $x_n \neq 0$ et on peut donc considérer $y_n = \frac{x_n}{\|x_n\|}$. Alors (y_n) est une suite de S et comme S est compact, (y_n) admet une sous-suite $(y_{\phi(n)})$ qui converge vers $y \in S$. De plus, la suite $(\|x_{\phi(n)}\|)$ est une suite du segment [0,1] qui est compact. Elle admet donc une suite extraite $(\|x_{\psi(n)}\|)$ qui converge vers le réel $a \in [0,1]$. Mais alors, $x_{\psi(n)} = \|x_{\psi(n)}\| \times y_{\psi(n)}$ converge vers ay qui est bien un élement de B. Ainsi, B est compact.

Exercice 35.

Soit E un espace vectoriel de dimension finie et K une partie compacte de E. Pour tout r > 0, on pose $K_r = \bigcup_{x \in K} \bar{B}(x, r)$. Démontrer que K_r est une partie compacte de E.

Correction

Puisque K_r est une partie d'un espace vectoriel normé de dimension finie, il suffit de démontrer que K_r est une partie fermée et bornée de E. Que K_r est bornée est facile à démontrer. K étant compact, c'est une partie bornée : soit M>0 tel que pour tout $x\in K$, on a $\|x\|\leq M$. Alors si $y\in K_r$, l'inégalité triangulaire montre facilement que $\|y\|\leq M+r$. Prouvons désormais que K_r est fermé. Soit (y_n) une suite de K_r qui converge vers $y\in E$. Alors pour chaque n, il existe $x_n\in K$ tel que $y_n\in \bar{B}(x_n,r)$. La suite (x_n) est une suite du compact K. Elle admet donc une sous-suite $(y_{\phi(n)})$ qui converge vers un certain $x\in K$. Mais alors, de l'inégalité $\|y_{\phi(n)}-x_{\phi(n)}\|\leq r$, on tire par passage à la limite que $\|y-x\|\leq r$. Ceci entraîne que $y\in K_r$ et donc que K_r est fermé.

Exercice 36.

Soit (u_n) une suite de \mathbb{R}^d . Pour $n \geq 1$, on pose $A_n = \{u_p; p \geq n\}$. Démontrer que l'ensemble des valeurs d'adhérence de (u_n) est :

$$V = \bigcap_{n \ge 1} \overline{A_n}.$$

En déduire que si la suite est bornée, V (l'ensemble des valeurs d'adhérence) est compact.

Correction

Soit x une valeur d'adhérence, et $n \ge 1$. x est limite d'une suite extraite $(u_{\varphi(k)})$. Quitte à retirer les premiers termes de cette suite, on peut supposer qu'on a toujours $\varphi(k) \ge n$, et donc $x \in \overline{A_n}$. Pour l'inclusion réciproque, soit $x \in \bigcap_n \overline{A_n}$. On construit par récurrence une suite extraite $(u_{\varphi(n)})$

telle que $||u_{\varphi(n)} - x|| \leq \frac{1}{2^n}$. Au rang 0, puisque $x \in \overline{A_1}$, il est possible de choisir $\varphi(0)$ tel que $||u_{\varphi(0)} - x|| \leq 1$. Supposons les termes construits jusqu'au rang n. Puisque $x \in \overline{A_{\varphi(n)+1}}$, il existe $\varphi(n+1) > \varphi(n)$ tel que :

 $||u_{\varphi(n+1)} - x|| \le \frac{1}{2^{n+1}}.$

Ceci prouve que x est une valeur d'adhérence de (u_n) . L'ensemble V des valeurs d'adhérence apparait donc comme une intersection de fermés : c'est un fermé. En outre, si (u_n) est bornée, il est clair que V est aussi borné. Dans ce cas, par caractérisation des parties compactes de \mathbb{R}^d , on a prouvé que V est compact.

Exercice 37.

Soit $(E, \|.\|)$ un espace vectoriel normé. Soit (x_n) une suite convergente de E et soit x sa limite. Montrer que l'ensemble :

$$A = \{x\} \cup \{x_n, \ n \in \mathbb{N}\}\$$

est compact.

Correction

Soit (y_n) une suite de A. Si elle prend un nombre infini de fois la valeur x, alors elle possède une suite extraite constante égale à x, donc convergente dans A. Sinon, y_n prend une infinité de fois une valeur différente de x. Quitte à considérer une suite extraite, on peut supposer que, pour chaque n, y_n est un terme de la suite de départ, d'où $y_n = x_{\varphi(n)}$. On traite deux cas séparément :

- 1. La suite d'entiers $(\varphi(n))$ est bornée : autrement dit, (y_n) ne prend qu'un nombre fini de valeurs différentes. Clairement, une telle suite admet une sous-suite convergente (il suffit de prendre une valeur qui est prise une infinité de fois) avec une limite dans A.
- 2. La suite d'entiers $(\varphi(n))$ n'est pas bornée : on peut alors extraire de (y_n) une sous-suite $(y_{\psi(n)})$ telle que $\varphi \circ \psi(n)$ soit strictement croissante. Mais alors, $y_{\psi(n)} = x_{\varphi \circ \psi(n)}$ converge vers x puisque c'est une suite extraite de (x_n) .

Dans tous les cas, on a prouvé que (y_n) admettait une suite extraite convergente : l'ensemble A est compact. On peut aussi donner une preuve en utilisant la propriété de Borel-Lebesgue, si on connait cette caractérisation des parties compactes des espaces vectoriels normés. Pour cela, on considère un recouvrement de A par une famille d'ouverts $(U_i)_{i\in I}$, et on doit prouver qu'on peut en extraire un sous-recouvrement fini. Soit i_0 tel que $x\in U_{i_0}$. Alors, puisque la suite converge vers x, il existe un entier N tel que pour tout n>N, on a $x_n\in U_{i_0}$. Soient ensuite i_1,\ldots,i_N tels que, pour $j\leq N,\,x_j\in U_{i_j}$. Alors, il est clair que $U_{i_0}\cup\cdots\cup U_{i_N}$ est un recouvrement ouvert de A, prouvant que A est compact. Sur cet exemple, la preuve utilisant la propriété de Borel-Lebesgue est sans doute plus facile.

Exercice 38.

Soit E une partie compacte d'un espace vectoriel normé, et $f:E\to E$ une fonction continue vérifiant :

$$\forall (x,y) \in E^2, \ x \neq y \implies ||f(x) - f(y)|| < ||x - y||.$$

1. Montrer que f admet un unique point fixe (que l'on notera α).

2. Ces résultats subsistent-ils si on suppose simplement E fermé?

Correction.

1. Soit la fonction continue $\psi(x) = ||f(x) - x||$, définie sur E, à valeurs dans \mathbb{R} . Cette fonction admet un minimum atteint en α . Supposons que $\alpha \neq f(\alpha)$. Alors :

$$\psi(f(\alpha)) = ||f(\alpha) - f(f(\alpha))|| < ||\alpha - f(\alpha)|| = \psi(\alpha),$$

ce qui contredit la définition de la borne inférieure. Donc $f(\alpha) = \alpha$. L'unicité est immédiate : si α et β sont deux points fixes distincts, on a en effet :

$$\|\beta - \alpha\| = \|f(\beta) - f(\alpha)\| < \|\beta - \alpha\|,$$

ce qui est absurde.

2. On prend $E = \mathbb{R}$, et f(x) = 1 si x <= 0, $f(x) = x + \frac{1}{1+x}$ si x > 0. Cette fonction vérifie les hypothèses demandées, mais n'admet aucun point fixe.

Exercice 39.

Soit A une partie compacte d'un espace vectoriel normé, et $f:A\to A$ vérifiant $\|f(x)-f(y)\|\geq \|x-y\|$ pour tous $x,y\in A$. Le but de l'exercice est de démontrer que f est une isométrie surjective.

- 1. Soit $a, b \in A$, et (a_n) , (b_n) les suites de A définies par $a_0 = a$, $b_0 = b$, $a_{n+1} = f(a_n)$ et $b_{n+1} = f(b_n)$. Démontrer que, pour tout $\varepsilon > 0$ et tout $p \ge 1$, il existe $k \ge p$ tel que $||a a_k|| < \varepsilon$ et $||b b_k|| < \varepsilon$. En déduire que f est à image dense.
- 2. On pose $u_n = ||a_n b_n||$. Montrer que (u_n) est une suite stationnaire.
- 3. En déduire que f est une isométrie.
- 4. Démontrer que f est surjective.

Correction.

1. La suite (a_n, b_n) est une suite du compact A^2 . Elle admet donc une suite extraite $(a_{\phi(n)}, b_{\phi(n)})$ qui converge. En particulier, il existe $n \ge 1$ tel que

$$||a_{\phi(n+p)} - a_{\phi(n)}|| < \varepsilon \text{ et } ||b_{\phi(n+p)} - b_{\phi(n)}|| < \varepsilon.$$

Concentrons-nous sur la première inégalité. Elle implique

$$||a_{\phi(n+p)-1} - a_{\phi(n)-1}|| \le ||f(a_{\phi(n+p)-1}) - f(a_{\phi(n)-1})|| = ||a_{\phi(n+p)} - a_{\phi(n)}|| < \varepsilon.$$

Itérant ce procédé, on trouve

$$||a_{\phi(n+p)-\phi(n)} - a_0|| < \varepsilon.$$

On peut faire la même chose pour (b_n) et on trouve le résultat demandé avec $k = \phi(n + p) - \phi(n) \ge p$. En notant $x = a_{k-1}$, on a en particulier prouvé que, pour tout $a \in A$ et tout $\varepsilon > 0$, il existe $x \in A$ tel que $||f(x) - a|| < \varepsilon$. Ceci implique que f est à image dense.

2. La suite (u_n) est croissante par propriété de dilatation des distances de f. Elle est majorée, donc elle est convergente. Notons u_{∞} sa limite. De plus, on peut trouver k aussi grand qu'on veut tel que $||a-a_k|| \leq \varepsilon$ et $||b-b_k|| \leq \varepsilon$. Ainsi, on a

$$0 \le u_k - u_0 = ||a_k - b_k|| - ||a - b|| \le ||a_k - a|| + ||b_k - b|| + 2\varepsilon.$$

Ceci étant vrai pour des valeurs de k que l'on peut choisir arbitrairement grandes, ceci implique que

$$0 \le u_{\infty} - u_0 \le 2\varepsilon$$
.

Comme $\varepsilon > 0$ est arbitraire, on a finalement $u_{\infty} = u_0$ et la suite (croissante) est stationnaire.

- 3. On a $u_1 = u_0$ et donc ||f(a) f(b)|| = ||a b||. Ceci étant vrai pour tout couple (a, b) de A^2 , f est bien une isométrie.
- 4. f est continue car f est une isométrie (en particulier, elle est lipschitzienne). Puisque A est compact, f(A) est compact donc fermé. De plus, f(A) est dense dans A. On a donc f(A) = A et f est surjective.