Feuille d'exercices n°9

Exercices à traiter en priorité :

Exercices: 1; 5; 6; 7; 10; 11; 15.

1. Exercices basiques

a. Connexité par arcs

Exercice 1.

Soit E un espace vectoriel normé et A, B deux parties connexes par arcs de E.

- 1. Démontrer que $A \times B$ est connexe par arcs.
- 2. En déduire que A + B est connexe par arcs.
- 3. L'intérieur de A est-il toujours connexe par arcs?

Exercice 2.

Soit $(A_i)_{i\in I}$ une famille de parties connexes par arcs de l'espace vectoriel normé E telles que $\bigcap_{i\in I}A_i\neq\varnothing$. Démontrer que $\bigcup_{i\in I}A_i$ est connexe par arcs.

Exercice 3.

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. On souhaite démontrer à l'aide de la connexité par arcs le résultat classique suivant : si f est continue et injective, alors f est strictement monotone. Pour cela, on pose $C = \{(x,y) \in \mathbb{R}^2; \ x > y\}$ et F(x,y) = f(x) - f(y), pour $(x,y) \in C$.

- 1. Démontrer que F(C) est un intervalle.
- 2. Conclure.

Exercice 4.

On dit que deux parties A et B de deux espaces vectoriels normés E et F sont homéomorphes s'il existe une bijection $f: A \to B$ telle que f et f^{-1} soient continues.

- 1. Démontrer que $\mathbb{R}^2 \setminus \{0\}$ est connexe par arcs.
- 2. Démontrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.
- 3. Démontrer que [0, 1] et le cercle trigonométrique ne sont pas homéomorphes.

b. Espaces vectoriels de dimension finie

Exercice 5.

Soit $n \in \mathbb{N}$ et E l'espace vectoriel des polynômes de degré inférieur ou égal à n. Démontrer qu'il existe $\lambda > 0$ tel que, pour tout $P \in E$, on a

$$\int_0^1 |P(t)| dt \geq \lambda \sup_{t \in [0,1]} |P(t)|.$$

Exercice 6.

Démontrer que l'ensemble des matrices symétriques est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Exercice 7.

Soit N une norme sur $\mathcal{M}_n(\mathbb{R})$. Démontrer qu'il existe une constante C > 0 telle que, pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$, on a

$$N(AB) \le CN(A)N(B)$$
.

2. Exercices d'entraînement

a. Connexité par arcs

Exercice 8.

Soit E un espace vectoriel normé de dimension supérieure ou égale à deux (éventuellement, de dimension infinie). Démontrer que sa sphère unité S_E est connexe par arcs.

Exercice 9.

Soit I un intervalle ouvert de $\mathbb R$ et soit $f:I\to\mathbb R$ une application dérivable. Notons $A=\{(x,y)\in I\times I;\ x< y\}.$

- 1. Démontrer que A est une partie connexe par arcs de \mathbb{R}^2 .
- 2. Pour $(x,y) \in A$, posons $g(x,y) = \frac{f(y) f(x)}{y x}$. Démontrer que $g(A) \subset f'(I) \subset \overline{g(A)}$.
- 3. Démontrer que f'(I) est un intervalle.

b. Espaces vectoriels de dimension finie

Exercice 10.

Montrer que l'ensemble $GL_n(\mathbb{R})$ des matrices inversibles est un ouvert dense dans $M_n(\mathbb{R})$.

Exercice 11.

Soit E un espace vectoriel normé de dimension finie, K une partie compacte de E et r > 0. On pose $L = \bigcup_{x \in K} \bar{B}(x, r)$. Démontrer que L est compact.

Exercice 12.

Soit E un espace vectoriel normé de dimension finie. Montrer que tout sous-espace vectoriel de ${\bf E}$ est fermé.

Exercice 13.

Soit F un sous-espace vectoriel de dimension finie d'un espace vectoriel normé E.

- 1. Démontrer que pour tout $a \in E$, il existe $x \in F$ tel que d(a, F) = ||x a||.
- 2. On suppose $F \neq E$. Soit $a \in E \setminus F$ et soit $x \in F$ tel que d(a, F) = ||a x|| On pose b = (a x)/||a x||. Démontrer que d(b, F) = 1 et ||b|| = 1.
- 3. On suppose que E est de dimension infinie. Construire une suite (b_n) de E telle que, pour tout $n \in \mathbb{N}$,

$$||b_n|| = 1$$
 et $d(b_n, \text{vect}(b_0, \dots, b_{n-1})) = 1$.

4. En déduire que la boule unité fermée de E n'est pas compacte.

Exercice 14.

Soit E un espace vectoriel normé de dimension finie, A une partie bornée non-vide de E. On souhaite prouver qu'il existe une boule fermée de rayon minimal contenant A. Pour cela, on note $D = \{r > 0; A \text{ est contenu dans une boule de rayon } r\}.$

- 1. Démontrer que D admet une borne inférieure. Cette borne inférieure sera notée r_0 .
- 2. Pour $n \ge 1$, on pose $r_n = r_0 + \frac{1}{n}$. Démontrer qu'il existe $x_n \in E$ tel que $A \subset \bar{B}(x_n, r_n)$.
- 3. Démontrer que (x_n) est bornée.
- 4. Conclure.
- 5. On suppose dans cette question que $E = (\mathbb{R}^2, \|\cdot\|_{\infty})$. Donner un exemple d'ensemble borné A pour lequel il existe plusieurs boules de rayon minimum contenant A.
- 6. On suppose dans cette question que $E=(\mathbb{R}^d,\|\cdot\|_2)$. Démontrer qu'il existe une unique boule de rayon minimal contenant A. On rappelle l'identité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Exercice 15.

Soit E un espace vectoriel de dimension finie et A une partie bornée de E non vide.

- 1. Soit $a \in E$. Démontrer qu'il existe une boule $\bar{B}(a, R_a)$ de rayon minimal qui contient A.
- 2. On pose $R = \inf\{R_a; a \in E\}$. Démontrer qu'il existe $b \in E$ tel que $A \subset \overline{B}(b, R)$.

En particulier, $\bar{B}(b,R)$ est une boule de E de rayon minimal contenant A.

Exercice 16.

Montrer que l'ensemble des matrices orthogonales $\mathcal{O}_n(\mathbb{R})$ (celles qui vérifient ${}^tMM = I_n$) est un compact de $\mathcal{M}_n(\mathbb{R})$. Est-il connexe par arcs?

3. Exercices d'approfondissement

a. Connexité par arcs

Exercice 17.

Soit A une partie d'un espace vectoriel normé E, et $f:A\to F$ une application continue, où F est un espace vectoriel normé. On dit que f est localement constante si, pour tout $a\in A$, il existe r>0 tel que f est constante sur $B(a,r)\cap A$. Le but de l'exercice est de démontrer que si A est connexe par arcs et f est localement constante, alors f est constante. Pour cela, on fixe $a,b\in A$ et on considère $\phi:[0,1]\to A$ un chemin continu tel que $\phi(0)=a$ et $\phi(1)=b$. On pose $t=\sup\{s\in[0,1];\ f(\phi(s))=f(a)\}.$

- 1. Démontre que t=1.
- 2. Conclure.

Exercice 18.

Soient A une partie connexe par arcs d'un espace vectoriel normé, et soit B une partie de A qui est à la fois ouverte et fermée relativement à A. On pose $f:A\to\mathbb{R}$ définie par f(x)=1 si $x\in B$ et f(x)=0 si $x\notin B$.

- 1. Démontrer que f est continue.
- 2. En déduire que $B = \emptyset$ ou B = A.

b. Espaces vectoriels de dimension finie

Exercice 19.

Soit n > 0 et $0 \le p \le n$ deux entiers. Montrer que l'ensemble F_p des éléments de $\mathcal{M}_n(\mathbb{R})$ de rang inférieur ou égal à p est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Exercice 20.

Soit $n \ge 1$ un entier.

- 1. Démontrer que l'ensemble des matrices diagonalisables est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Démontrer qu'il existe un voisinage de A dans $\mathcal{M}_2(\mathbb{R})$ ne contenant aucune matrice diagonalisable.

Exercice 21.

Déterminer l'intérieur de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

Exercice 22.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ vérifiant, pour tout $x \in E$, $||u(x)|| \leq 1$.

- 1. Montrer que $\ker(u Id_E) = \ker(u Id_E)^2$.
- 2. En déduire que $\ker(u Id_E) \oplus \operatorname{Im}(u Id_E) = E$.
- 3. Pour $n \ge 1$, on pose $u_n = \frac{1}{n}(Id_E + u + \dots + u^{n-1})$. Montrer que u_n converge dans $\mathcal{L}(E)$ vers une application v que l'on déterminera.

Exercice 23.

Soit E un \mathbb{R} -espace vectoriel normé de dimension finie, et K un compact de E tel que $0 \in \overset{\circ}{K}$. On note H l'ensemble des $u \in \mathcal{L}(E)$ tels que $u(K) \subset K$. Montrer que pour tout $u \in H$, on a $|\det u| \leq 1$.