Corrigé de la feuille d'exercices n°9

Exercices à traiter en priorité:

Exercices: 1; 5; 6; 7; 10; 11; 15.

1. Exercices basiques

a. Connexité par arcs

Exercice 1.

Soit E un espace vectoriel normé et A, B deux parties connexes par arcs de E.

- 1. Démontrer que $A \times B$ est connexe par arcs.
- 2. En déduire que A + B est connexe par arcs.
- 3. L'intérieur de A est-il toujours connexe par arcs?

Correction.

- 1. Soit $(a,b) \in A \times B$ et $(a',b') \in A \times B$. Puisque A est connexe par arcs, il existe $f:[0,1] \to A$ continue telle que f(0) = a et f(1) = a'. Puisque B est connexe par arcs, il existe $g:[0,1] \to B$ continue telle que g(0) = b et g(1) = b'. Mais alors, posons, pour $t \in [0,1]$, h(t) = (f(t),g(t)). Alors h est continue, à valeurs dans $A \times B$ et h(0) = (a,b), h(1) = (a',b'). Ainsi, $A \times B$ est bien connexe par arcs.
- 2. Soit $\phi: A \times B \to E$, $(a,b) \mapsto a+b$. Alors ϕ est continue, et $\phi(A \times B) = A+B$. Puisque $A \times B$ est connexe par arcs, il en est de même de A+B.
- 3. Trouvons un contre-exemple dans \mathbb{R}^2 . Il suffit de prendre pour A la réunion de deux boules disjointes que l'on relie par un segment. Cet ensemble est connexe par arcs. En revanche, l'intérieur, qui est égal à la réunion des deux boules ouvertes, n'est plus connexe par arcs car on ne peut plus passer de l'une à l'autre.

Exercice 2.

Soit $(A_i)_{i\in I}$ une famille de parties connexes par arcs de l'espace vectoriel normé E telles que $\bigcap_{i\in I} A_i \neq \emptyset$. Démontrer que $\bigcup_{i\in I} A_i$ est connexe par arcs.

Correction.

Soient $a, b \in \bigcup_{i \in I} A_i$. On va construire explicitement un chemin allant de a à b. Soit $c \in \bigcap_{i \in I} A_i$ et soit i_1, i_2 tel que $a \in A_{i_1}$ et $b \in A_{i_2}$. Alors, puisque A_{i_1} est connexe par arcs, il existe un chemin continu γ_1 contenu dans A_{i_1} tel que γ_1 relie a à c. Puisque A_{i_2} est connexe par arcs, il

existe un chemin continu γ_2 contenu dans A_{i_2} tel que γ_2 relie c à b. Alors le chemin constitué de γ_1 suivi de γ_2 est un chemin contenu dans $\bigcup_{i \in I} A_i$ qui relie a à b. Ainsi, $\bigcup_{i \in I} A_i$ est connexe par arcs.

Exercice 3.

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. On souhaite démontrer à l'aide de la connexité par arcs le résultat classique suivant : si f est continue et injective, alors f est strictement monotone. Pour cela, on pose $C = \{(x, y) \in \mathbb{R}^2; x > y\}$ et F(x, y) = f(x) - f(y), pour $(x, y) \in C$.

- 1. Démontrer que F(C) est un intervalle.
- 2. Conclure.

Correction

- 1. Remarquons d'abord que C est connexe par arcs, car convexe (faire un dessin). Puisque F est continue, F(C) est un connexe par arcs de \mathbb{R} , c'est-à-dire un intervalle.
- 2. Puisque f est injective, $0 \notin F(C)$. Puisque F(C) est un intervalle, on a ou bien $F(C) \subset]0, +\infty[$ (et dans ce cas F est strictement croissante), ou bien $F(C) \subset]-\infty, 0[$ (et dans ce cas F est strictement décroissante). Dans tous les cas, on a bien prouvé que F est strictement monotone.

Exercice 4.

On dit que deux parties A et B de deux espaces vectoriels normés E et F sont homéomorphes s'il existe une bijection $f: A \to B$ telle que f et f^{-1} soient continues.

- 1. Démontrer que $\mathbb{R}^2 \setminus \{0\}$ est connexe par arcs.
- 2. Démontrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.
- 3. Démontrer que [0,1] et le cercle trigonométrique ne sont pas homéomorphes.

Correction

- 1. \mathbb{R}^2 est connexe par arcs. Considérons en effet x et y dans $\mathbb{R}^2 \setminus \{0\}$. Il est facile de voir que l'on peut tracer un arc constitué de deux segments joignant x à y sans passer par l'origine.
- 2. Procédons par l'absurde et imaginons que \mathbb{R} et \mathbb{R}^2 soient homéomorphes. Il existerait alors une bijection $f: \mathbb{R}^2 \to \mathbb{R}$ qui soit continues. Posons a = f(0,0). Alors $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R} \setminus \{a\}$ resterait une bijection continue. Mais $\mathbb{R}^2 \setminus \{0\}$ est connexe par arcs, et $\mathbb{R} \setminus \{a\}$ ne l'est pas (les parties de \mathbb{R} connexes par arcs sont les intervalles).
- 3. On procède de la même façon, en remarquant que le cercle privé d'un point est connexe par arcs, ce qui n'est pas le cas de $[0,1]\setminus\{1/2\}$. En notant $\mathcal C$ le cercle unité et $f:\mathcal C\to [0,1]$ une éventuelle bijection continue, on pose $M=f^{-1}(1/2)$ et on remarque qu'on obtient encore une bijection continue entre le connexe par arcs $\mathcal C\setminus\{M\}$ et le non connexe par arcs $[0,1]\setminus\{1/2\}$.

b. Espaces vectoriels de dimension finie

Exercice 5.

Soit $n \in \mathbb{N}$ et E l'espace vectoriel des polynômes de degré inférieur ou égal à n. Démontrer qu'il existe $\lambda > 0$ tel que, pour tout $P \in E$, on a

$$\int_0^1 |P(t)|dt \ge \lambda \sup_{t \in [0,1]} |P(t)|.$$

Correction.

Il suffit de remarquer que E est de dimension finie et que $\int_0^1 |P(t)| dt$ et $\sup_{t \in [0,1]} |P(t)|$ définissent des normes sur E. Elles sont donc équivalentes d'où le résultat.

Exercice 6.

Démontrer que l'ensemble des matrices symétriques est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Correction.

Soit $(S_{i,j}(k))$ une suite de matrices symétriques qui converge dans $\mathcal{M}_n(\mathbb{R})$ vers la matrice $S = (S_{i,j})$. Alors tous les entiers $1 \leq i, j \leq n$ et $k \geq 1$, on a $S_{i,j}(k) = S_{j,i}(k)$. Puisque la convergence dans $\mathcal{M}_n(\mathbb{R})$ entraîne la convergence coordonnées par coordonnées, ceci implique en faisant tendre k vers $+\infty$ que $S_{i,j} = S_{j,i}$ pour tous $1 \leq i, j \leq n$. Ainsi, la matrice S est symétrique et l'ensemble des matrices symétriques est fermé.

Exercice 7.

Soit N une norme sur $\mathcal{M}_n(\mathbb{R})$. Démontrer qu'il existe une constante C > 0 telle que, pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$, on a

$$N(AB) \le CN(A)N(B)$$
.

Correction.

Il y a plusieurs méthodes pour résoudre cet exercice. On peut par exemple prouver que l'inégalité est vraie pour une norme particulière sur $\mathcal{M}_n(\mathbb{R})$, puis utiliser l'équivalence des normes. Précisément, considérons $N_{\infty}(A) = \sup_{1 \leq i,j \leq n} |a_{i,j}|$. Prenons $A = (a_{i,j})$, $B = (b_{i,j})$ et C = AB. Alors on a, pour tout $1 \leq i,j \leq n$,

$$|c_{i,j}| \le \sum_{k=1}^{n} |a_{i,k}| \times |b_{k,j}| \le \sum_{k=1}^{n} N_{\infty}(A) N_{\infty}(B)$$

ce qui prouve que $N_{\infty}(AB) \leq nN_{\infty}(A)N_{\infty}(B)$. Mais d'autre part, N et N_{∞} sont équivalentes.

Il existe donc $\alpha, \beta > 0$ tels que $\alpha N \leq N_{\infty} \leq \beta N$. On en déduit que

$$N(AB) \le \frac{1}{\alpha} N_{\infty}(AB) \le \frac{1}{\alpha} n N_{\infty}(A) N_{\infty}(B) \le \frac{n\beta^2}{\alpha} N(A) N(B).$$

2. Exercices d'entraînement

a. Connexité par arcs

Exercice 8.

Soit E un espace vectoriel normé de dimension supérieure ou égale à deux (éventuellement, de dimension infinie). Démontrer que sa sphère unité S_E est connexe par arcs.

Correction

Soit $x, y \in \mathcal{S}_E$. Supposons d'abord que $y \neq -x$. Alors le segment [x, y] ne passe pas par l'origine. Autrement dit, pour tout $t \in [0, 1]$, on a $(1 - t)x + ty \neq 0$. On cosidère alors $\gamma : [0, 1] \to \mathcal{S}_E$,

$$\gamma(t) = \frac{(1-t)x + ty}{\|(1-t)x + ty\|}.$$

Alors γ définit bien un chemin continu sur la sphère tel que $\gamma(0)=x$ et $\gamma(1)=y$. Supposons maintenant que y=-x. Alors, puisque E est de dimension au moins égale à deux, il existe $z\in E$ tel que (x,z) est libre. On définit alors, par le raisonnement précédent, un chemin continu γ_1 sur la sphère de x vers z, puis un chemin continu γ_2 sur la sphère de z à -x. La réunion des deux chemins γ_1 et γ_2 donne un chemin continu sur la sphère de x à -x.

Exercice 9.

Soit I un intervalle ouvert de \mathbb{R} et soit $f: I \to \mathbb{R}$ une application dérivable. Notons $A = \{(x, y) \in I \times I; x < y\}$.

- 1. Démontrer que A est une partie connexe par arcs de \mathbb{R}^2 .
- 2. Pour $(x,y) \in A$, posons $g(x,y) = \frac{f(y) f(x)}{y x}$. Démontrer que $g(A) \subset f'(I) \subset \overline{g(A)}$.
- 3. Démontrer que f'(I) est un intervalle.

Correction

- 1. A est convexe, donc connexe par arcs.
- 2. Soit $z \in g(A)$. Alors il existe $(x, y) \in A$ tel que

$$z = g(x, y) = \frac{f(x) - f(y)}{x - y}.$$

Par le théorème des accroissements finis, il existe $a \in I$ tel que

$$z = g(x,y) = \frac{f(x) - f(y)}{x - y} = f'(a)$$

et donc $z \in f'(I)$. D'autre part, soit $z = f'(a) \in f'(I)$. Soit (b_n) une suite de I qui tend vers a par valeurs supérieures. Alors, on a par la définition de la dérivée en a que

$$f'(a) = \lim_{n \to +\infty} g(a, b_n).$$

Mais $g(a, b_n) \in g(A)$, et donc $z \in \overline{g(A)}$.

3. g(A) est un connexe par arcs de \mathbb{R} , donc un intervalle. Ainsi, f'(I), qui est compris entre un intervalle et l'adhérence d'un intervalle, est lui-même un intervalle.

b. Espaces vectoriels de dimension finie

Exercice 10.

Montrer que l'ensemble $GL_n(\mathbb{R})$ des matrices inversibles est un ouvert dense dans $M_n(\mathbb{R})$.

Correction.

L'application déterminant est continue sur $M_n(\mathbb{R})$ (c'est un polynôme en les coefficients de la matrice). En outre,

$$GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R}^*).$$

Ainsi, cet ensemble est ouvert comme image réciproque d'un ouvert. Prouvons qu'il est dense. Une matrice M n'admet qu'un nombre fini de valeurs propres. Il existe donc $\rho > 0$ tel que $0 < |\lambda| < \rho$ entraı̂ne que $M - \lambda I$ est inversible. En outre, si $\lambda \to 0$, $M - \lambda I \to M$, et donc M est limite d'une suite de matrices inversibles.

Exercice 11.

Soit E un espace vectoriel normé de dimension finie, K une partie compacte de E et r > 0. On pose $L = \bigcup_{x \in K} \bar{B}(x, r)$. Démontrer que L est compact.

Correction.

Il suffit de démontrer que L est fermé et borné. D'abord, puisque K est compact, il est borné. Il existe donc M>0 tel que, pour tout $x\in K$, on a $\|x\|\leq M$. Prenons ensuite $y\in L$. Alors il existe $x\in K$ tel que $\|y-x\|\leq r$. Il vient $\|y\|\leq \|x\|+r\leq M+r$ et donc L est bornée. Soit ensuite (y_n) une suite de L qui converge vers $y\in E$, et prouvons que $y\in L$. Pour chaque entier n, il existe $x_n\in K$ tel que $\|y_n-x_n\|\leq r$. Puisque K est compact, il existe $x\in K$ et une sous-suite $(x_{\phi(n)})$ telle que $(x_{\phi(n)})$ converge vers x. Mais alors $(y_{\phi(n)})$ converge aussi vers y et de l'inégalité $\|y_{\phi(n)}-x_{\phi(n)}\|\leq r$, on tire en passant à la limite que $\|y-x\|\leq r$. Ceci prouve que $y\in L$, et donc que L est compact.

Exercice 12.

Soit E un espace vectoriel normé de dimension finie. Montrer que tout sous-espace vectoriel de E est fermé.

Correction.

Soit F un tel sous-espace, et (e_1, \ldots, e_p) une base de F. On complète (e_1, \ldots, e_p) en une base (e_1, \ldots, e_q) de E. On considère enfin la norme N sur E:

$$N\left(\sum_{i=1}^{q} x_i e_i\right) = \max_{i} |x_i|.$$

Rappelons que, puisque E est de dimension finie, toutes les normes sur E sont équivalentes, il suffit de prouver que F est fermé relativement à cette norme. Soit (x(n)) une suite de F, qui converge vers $x \in E$ pour cette norme. Chaque x(n) s'écrit :

$$x(n) = x_1(n)e_1 + \dots + x_p(n)e_p + x_{p+1}(n)e_{p+1} + \dots + x_q(n)e_q,$$

avec $x_i(n) = 0$ si $i \ge p + 1$. On décompose également x sous cette forme :

$$x = x_1 e_1 + \dots + x_a e_a.$$

Remarquons maintenant que:

$$|x_i(n) - x_i| \le N(x(n) - x).$$

Ceci prouve que chaque suite $(x_i(n))$ converge vers x_i (dans un evn de dimension finie, la convergence équivaut à la convergence coordonnée par coordonnée). En particulier, pour $i \geq p+1$, $x_i=0$ ce qui prouve que $x \in F$.

Exercice 13.

Soit F un sous-espace vectoriel de dimension finie d'un espace vectoriel normé E.

- 1. Démontrer que pour tout $a \in E$, il existe $x \in F$ tel que d(a, F) = ||x a||.
- 2. On suppose $F \neq E$. Soit $a \in E \setminus F$ et soit $x \in F$ tel que $d(a,F) = \|a-x\|$ On pose $b = (a-x)/\|a-x\|$. Démontrer que d(b,F) = 1 et $\|b\| = 1$.
- 3. On suppose que E est de dimension infinie. Construire une suite (b_n) de E telle que, pour tout $n \in \mathbb{N}$,

$$||b_n|| = 1$$
 et $d(b_n, \text{vect}(b_0, \dots, b_{n-1})) = 1$.

4. En déduire que la boule unité fermée de E n'est pas compacte.

Correction

1. Par définition de la borne inférieure d'un ensemble, il existe une suite (x_n) de F telle que $||x_n - a|| \to d(a, F)$. En particulier, la suite (x_n) est bornée et c'est une suite de l'espace vectoriel normée de dimension finie F. Elle admet donc une sous-suite $(x_{\phi(n)})$ qui converge vers $x \in F$. Mais alors, par passage à la limite, on a ||x - a|| = d(a, F).

2. Il est d'abord évident que ||b||=1. De plus, $d(b,F)\leq ||b-0||\leq 1$. De plus, pour tout $y\in F$, on a

$$||b - y|| = \frac{1}{||a - x||} \times ||a - z||$$

où
$$z = x + ||a - x||y \in F$$
. Ainsi, $||b - y|| \ge 1$ et donc $d(b, F) \ge 1$.

- 3. On construit la suite (b_n) par récurrence. On l'initialise avec b_0 un vecteur unitaire, puis si b_0, \ldots, b_{n-1} ont été construits, on définit b_n en utilisant le résultat de la question précédente avec $F = \text{vect}(b_0, \ldots, b_{n-1})$. Bien sûr, $F \neq E$ puisque E est de dimension infinie.
- 4. Si la boule unité fermée de E était compacte, la suite (b_n) construite à la question précédente aurait une sous-suite convergente. Mais ce n'est pas le cas. En effet, pour tout n > m, on a

$$||b_n - b_m|| \ge d(b_n, \text{vect}(b_0, \dots, b_{n-1})) = 1.$$

On ne peut pas extraire d'une telle suite une suite convergente. Autrement, si $(b_{\phi(n)})$ était une telle suite, on aurait $||b_{\phi(n+1)} - b_{\phi(n)}|| \to 0$, ce qui contredit l'inégalité précédente.

Exercice 14.

Soit E un espace vectoriel normé de dimension finie, A une partie bornée non-vide de E. On souhaite prouver qu'il existe une boule fermée de rayon minimal contenant A. Pour cela, on note $D = \{r > 0; A \text{ est contenu dans une boule de rayon } r\}.$

- 1. Démontrer que D admet une borne inférieure. Cette borne inférieure sera notée r_0 .
- 2. Pour $n \ge 1$, on pose $r_n = r_0 + \frac{1}{n}$. Démontrer qu'il existe $x_n \in E$ tel que $A \subset \bar{B}(x_n, r_n)$.
- 3. Démontrer que (x_n) est bornée.
- 4. Conclure.
- 5. On suppose dans cette question que $E = (\mathbb{R}^2, \|\cdot\|_{\infty})$. Donner un exemple d'ensemble borné A pour lequel il existe plusieurs boules de rayon minimum contenant A.
- 6. On suppose dans cette question que $E = (\mathbb{R}^d, \|\cdot\|_2)$. Démontrer qu'il existe une unique boule de rayon minimal contenant A. On rappelle l'identité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Correction.

- 1. D est un ensemble non vide (car A est borné) et minoré par 0. Il admet donc une borne inférieure.
- 2. Par définition de la borne inférieure, il existe $r \in D$ tel que $r_0 \le r < r_n$. Par définition de D, il existe $x_n \in E$ tel que $A \subset \bar{B}(x_n, r) \subset \bar{B}(x_n, r_n)$.
- 3. Soit $a \in A$. Alors

$$||x_n - a|| \le r_n \le r_0 + 1.$$

Ainsi, (x_n) est une suite bornée.

4. Puisque (x_n) est une suite bornée dans un espace vectoriel normé de dimension finie, elle admet une sous-suite $(x_{\phi(n)})$ convergente vers $x \in E$. Soit $a \in A$. Passant à la limite dans l'inégalité $||a - x_{\phi(n)}|| \le r_{\phi(n)}$, on trouve $||a - x|| \le r_0$. Ainsi, $D \subset \bar{B}(x, r_0)$, et cette boule est une boule fermée de rayon minimal contenant A.

- 5. Considérons $A=[0,1]\times\{0\}$. Une boule contenant A a au moins un rayon égal à 1/2 (considérer ce qui se passe sur la première coordonnée). Maintenant, si x=(1/2,0) et y=(1/2,1/4), alors $A\subset \bar{B}(x,1/2)$ et $A\subset \bar{B}(y,1/2)$. Il n'y a pas unicité d'une boule fermée de rayon minimal contenant A.
- 6. Supposons que $A \subset \bar{B}(x_1, r_0)$ et $A \subset \bar{B}(x_2, r_0)$. Alors, en utilisant l'identité du parallélogramme, on trouve que, pour tout $a \in A$:

$$\left\| a - \frac{x_1 + x_2}{2} \right\|^2 = \frac{1}{2} \|a - x_1\|^2 + \frac{1}{2} \|a - x_2\|^2 - \frac{1}{4} \|x_1 - x_2\|^2$$

$$\leq r_0^2 - \frac{\|x_1 - x_2\|^2}{4}.$$

En notant $x=(x_1+x_2)/2$ et $\rho=\sqrt{r_0^2-\frac{\|x_1-x_2\|^2}{4}}< r_0$, on a donc $A\subset \bar{B}(x,\rho)$, ce qui contredit la minimalité de r_0 .

Exercice 15.

Soit E un espace vectoriel de dimension finie et A une partie bornée de E non vide.

- 1. Soit $a \in E$. Démontrer qu'il existe une boule $\bar{B}(a, R_a)$ de rayon minimal qui contient A.
- 2. On pose $R = \inf\{R_a; a \in E\}$. Démontrer qu'il existe $b \in E$ tel que $A \subset \bar{B}(b, R)$.

En particulier, $\bar{B}(b,R)$ est une boule de E de rayon minimal contenant A.

Correction

- 1. On pose $R_a = \sup\{\|x a\|; \ x \in E\}$. Alors on a $A \subset \bar{B}(a, R_a)$ et de plus, par définition de la borne supérieure, R_a est le plus petit réel avec cette propriété.
- 2. Soit (a_n) une suite de E telle que (R_{a_n}) converge vers R. Alors, (a_n) est une suite bornée. En effet, fixons $x_0 \in A$. Alors, pour tout entier n, on a d'après l'inégalité triangulaire,

$$||a_n|| \le ||a_n - x_0|| + ||x_0|| \le R_{a_n} + ||x_0|| \le R + 1 + ||x_0||$$

dès que n est assez grand. Puisque E est de dimension finie, on peut extraire de (a_n) une suite $(a_{\phi(n)})$ qui converge vers un certain $b \in E$. Mais alors, puisque pour tout $x \in A$, on a pour tout entier n,

$$||x - a_{\phi(n)}|| \le R_{a_{\phi(n)}},$$

on a par passage à la limite

$$||x - b|| \le R$$
.

Exercice 16.

Montrer que l'ensemble des matrices orthogonales $\mathcal{O}_n(\mathbb{R})$ (celles qui vérifient ${}^tMM = I_n$) est un compact de $\mathcal{M}_n(\mathbb{R})$. Est-il connexe par arcs?

Correction.

Il suffit de prouver que cet ensemble est fermé et borné, puisque $\mathcal{M}_n(\mathbb{R})$ est un espace vectoriel de dimension finie n^2 . Mais cet espace est fermé, car c'est l'image réciproque d'un fermé, à savoir I_n , par l'application continue $M \mapsto {}^t MM$. Il est de plus borné. Munissons $\mathcal{M}_n(\mathbb{R})$ de la norme infinie N_{∞} et notons f l'endomorphisme associé à M dans la base canonique de \mathbb{R}^n . Aors, si M est orthogonale, f est une isométrie et on a

$$|m_{i,j}| = |\langle f(e_j), e_i \rangle| \le 1.$$

Enfin, $\mathcal{O}_n(\mathbb{R})$ n'est pas connexe par arcs. En effet, s'il l'était, puisque l'application déterminant est continue, l'image de $\mathcal{O}_n(\mathbb{R})$ par l'application déterminant serait un connexe par arcs de \mathbb{R} , c'est-à-dire un intervalle. Or, il est facile de voir que si $M \in \mathcal{O}_n(\mathbb{R})$, alors $\det(M)^2 = 1$ et donc $\det(M) = \pm 1$. De plus, ces deux valeurs sont atteintes, car $\det(I_n) = 1$ et $\det(A) = -1$ où A est la matrice orthogonale diagonale avec -1 pour premier coefficient sur la diagonale, et 0 ailleurs. On a donc $\det(\mathcal{O}_n(\mathbb{R})) = \{\pm 1\}$, et donc $\mathcal{O}_n(\mathbb{R})$ n'est pas connexe par arcs.

3. Exercices d'approfondissement

a. Connexité par arcs

Exercice 17.

Soit A une partie d'un espace vectoriel normé E, et $f:A\to F$ une application continue, où F est un espace vectoriel normé. On dit que f est localement constante si, pour tout $a\in A$, il existe r>0 tel que f est constante sur $B(a,r)\cap A$. Le but de l'exercice est de démontrer que si A est connexe par arcs et f est localement constante, alors f est constante. Pour cela, on fixe $a,b\in A$ et on considère $\phi:[0,1]\to A$ un chemin continu tel que $\phi(0)=a$ et $\phi(1)=b$. On pose $t=\sup\{s\in[0,1];\ f(\phi(s))=f(a)\}.$

- 1. Démontre que t=1.
- 2. Conclure.

Correction.

- 1. Posons $H = \{s \in [0,1]; \ f(\phi(s)) = f(a)\}$. Cet ensemble est non vide, car $0 \in H$, majoré, il admet donc une borne supérieure t. De plus, $t \in H$, car il existe une suite (s_n) de H qui tend vers t. On a donc $f(a) = f(\phi(s_n))$ et par passage à la limite, f(t) = f(a). Supposons t < 1 et posons $c = \phi(t)$. Alors il existe t > 0 tel que t = t est constante sur t = t existe t = t et t = t est la borne supérieure de t = t et t = t
- 2. D'après la question précédente, t=1 et $f(b)=f(\phi(1))=f(a)$. Comme a et b sont arbitraires, c'est bien que f est constante.

Exercice 18.

Soient A une partie connexe par arcs d'un espace vectoriel normé, et soit B une partie de A qui est à la fois ouverte et fermée relativement à A. On pose $f:A\to\mathbb{R}$ définie par f(x)=1 si

 $x \in B$ et f(x) = 0 si $x \notin B$.

- 1. Démontrer que f est continue.
- 2. En déduire que $B = \emptyset$ ou B = A.

Correction.

- 1. Soit O un ouvert de \mathbb{R} . On va prouver que l'image réciproque de O est un ouvert de A. On distingue quatre cas.
 - Si $0 \notin O$ et $1 \notin O$, alors $f^{-1}(O) = \emptyset$, qui est bien ouvert (relatif de A).
 - Si $0 \notin O$ et $1 \in O$, alors $f^{-1}(O) = B$, qui est bien ouvert (relativement à A).
 - Si $0 \in O$ et $1 \notin O$, alors $f^{-1}(O) = B^c$, qui est bien ouvert relativement à A puisque B est fermé relativement à A.
 - Si $0 \in O$ et $1 \in O$, alors $f^{-1}(O) = A$, qui est bien un ouvert relatif de A.

Ainsi, l'image réciproque de tout ouvert est un ouvert, et donc f est continue.

2. Puisque A est connexe par arcs et que f est continue, f(A) est connexe par arcs. C'est donc un intervalle de \mathbb{R} . Mais $f(A) \subset \{0,1\}$, et il y a donc deux cas possibles : $f(A) = \{0\}$, ce qui signifie que $B = \emptyset$, et $f(A) = \{1\}$, ce qui signifie que B = A.

b. Espaces vectoriels de dimension finie

Exercice 19.

Soit n > 0 et $0 \le p \le n$ deux entiers. Montrer que l'ensemble F_p des éléments de $\mathcal{M}_n(\mathbb{R})$ de rang inférieur ou égal à p est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Correction

L'important (et le plus difficile) dans cet exercice est de trouver une bonne caractérisation de ces matrices. Nous allons utiliser la suivante : une matrice est de rang inférieur ou égal à p si et seulement si tous ses déterminants d'ordre p+1 sont nuls. On peut commencer par écarter le cas p=n, puisque dans ce cas $F_p=\mathcal{M}_n(\mathbb{R})$. On suppose donc p< n. Pour I,J deux parties de $\{1,\ldots,n\}$ de cardinal p+1 et $M=(m_{i,j})_{1\leq i,j\leq n}$, on désigne par $M_{I,J}$ la matrice de $\mathcal{M}_{p+1}(\mathbb{R})$ définie par $(m_{i,j})_{i\in I,j\in J}$. Alors on a

$$F_p = \bigcap_{I,J} \{ M \in \mathcal{M}_n(\mathbb{R}); \det(M_{I,J}) = 0 \}.$$

Or, les deux applications suivantes sont continues :

$$g_{I,J}: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_{p+1}(\mathbb{R})$$

$$M \mapsto M_{I,J}$$

$$det: \mathcal{M}_{p+1}(\mathbb{R}) \to \mathbb{R}$$

$$A \mapsto \det(A).$$

On a donc

$$F_p = \bigcap_{I,J} (\det \circ g_{I,J})^{-1}(\{0\}).$$

 F_p est donc une intersection d'images réciproques de fermés par une application continue. C'est donc un fermé.

Exercice 20.

Soit $n \ge 1$ un entier.

- 1. Démontrer que l'ensemble des matrices diagonalisables est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Démontrer qu'il existe un voisinage de A dans $\mathcal{M}_2(\mathbb{R})$ ne contenant aucune matrice diagonalisable.

Correction.

1. Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$. Puisque A est trigonalisable, A s'écrit :

$$A = P \begin{pmatrix} \lambda_1 & * & \dots & & \\ 0 & \lambda_2 & \dots & & \\ 0 & 0 & \lambda_3 & * & \dots \\ \vdots & \vdots & \vdots & \ddots & * \end{pmatrix} P^{-1}.$$

On pose, pour tout k:

$$A_{k} = P \begin{pmatrix} \lambda_{1} + \frac{1}{k} & * & \dots & \\ 0 & \lambda_{2} + \frac{2}{k} & \dots & \\ 0 & 0 & \lambda_{3} + \frac{3}{k} & * & \dots \\ \vdots & \vdots & \vdots & \ddots & * \end{pmatrix} P^{-1}.$$

Dès que k est assez grand, les nombres $\lambda_i + \frac{i}{k}$ sont tous distincts (si $\lambda_i = \lambda_j$, c'est clair, et si $\lambda_i \neq \lambda_j$, ce n'est pas non plus très compliqué à vérifier!). Donc les matrices A_k sont diagonalisables. Et elles tendent évidemment vers A.

2. Soit $M=\left(\begin{array}{cc} a & c \\ b & d \end{array}\right)$ telle que $\|A-M\|_{\infty}<1/4$. Alors le polynôme caractéristique de M est

$$\chi_M(X) = X^2 - (a+d)X + (ad-bc).$$

Son discriminant est donc

$$\Delta = (a+d)^2 - 4(ad-bc)$$

En utilisant que $-1/4 \le a, d \le 1/4, 3/4 \le c \le 5/4$ et $-5/4 \le b \le 3/4$, on trouve que

$$\Delta \leq \frac{1}{4} - 4\left(\frac{9}{16} - \frac{1}{16}\right) = \frac{1}{4} - 2 < 0.$$

Ainsi, M n'admet pas de valeurs propres réelles et n'est pas diagonalisable (sur \mathbb{R}). Le résultat de la question précédente est donc faux dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 21.

Déterminer l'intérieur de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

Correction

On va prouver que l'intérieur de l'ensemble des matrices diagonalisables \mathcal{D} de $M_n(\mathbb{C})$ est l'ensemble des matrices diagonalisables dont toutes les valeurs propres sont disjointes. Pour cela, on va démontrer deux choses :

1. Soit M une matrice diagonalisable ayant deux valeurs propres égales. Alors M n'est pas dans l'intérieur de \mathcal{D} . Autrement dit, on peut trouver une suite de matrice (M_p) qui converge vers M et qui ne sont pas diagonalisables. Soit P une matrice inversible telle que $M = PDP^{-1}$ où D est diagonale,

$$D = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & 0 \vdots \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}.$$

Alors, posons

$$D_p = \begin{pmatrix} \lambda & 1/p & \dots & 0 \\ 0 & \lambda & 0 & \vdots \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

(on peut toujours s'arranger pour que ce soient les deux premières valeurs propres qui sont égales). Alors la suite (M_p) définie par $M_p = PD_pP^{-1}$ converge vers M et chaque M_p n'est pas diagonalisable. Sinon, D_p serait diagonalisable, ce qui n'est pas le cas (la restriction de D_p au sous-espace vectoriel engendré par les deux premiers vecteurs de base n'est pas diagonalisable).

2. Soit M une matrice diagonalisable dont toutes les valeurs propres sont distinctes. Son polynôme caractéristique χ_M est scindé à racines simples. Par continuité de $A \mapsto \chi_A$ et des racines d'un polynôme en fonction de ses coefficients, il existe un voisinage V de M tel que, pour tout $A \in V$, le polynôme χ_A est scindé à racines simples. Autrement dit, A est diagonalisable. Un voisinage de M est contenu dans \mathcal{D} , donc M est dans l'intérieur de \mathcal{D} .

Exercice 22.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ vérifiant, pour tout $x \in E$, $||u(x)|| \leq 1$.

- 1. Montrer que $\ker(u Id_E) = \ker(u Id_E)^2$.
- 2. En déduire que $\ker(u Id_E) \oplus \operatorname{Im}(u Id_E) = E$.
- 3. Pour $n \ge 1$, on pose $u_n = \frac{1}{n}(Id_E + u + \dots + u^{n-1})$. Montrer que u_n converge dans $\mathcal{L}(E)$ vers une application v que l'on déterminera.

1. Soit $x \in \ker(u - Id_E)^2$, i.e. $u^2(x) = 2u(x) - x$. On prouve par récurrence sur $n \ge 1$ que

$$u^n(x) = nu(x) - (n-1)x.$$

La formule est en effet vérifiée pour n = 1, et si elle est vraie au rang n, alors

$$u^{n+1}(x) = nu^{2}(x) - (n-1)u(x) = n(2u(x) - x) - (n-1)u(x) = (n+1)u(x) - nx.$$

Écrivons ceci sous la forme

$$u^n(x) = n(u(x) - x) - x.$$

Puisque la suite $(u^n(x))$ est bornée (par ||x||), ceci n'est possible que si u(x) = x. Donc $x \in \ker(u - Id_E)$ ce qui prouve que $\ker(u - Id_E)^2 \subset \ker(u - Id_E)$. Comme l'autre inclusion est toujours vérifiée, on a égalité.

- 2. D'après le théorème du rang, il suffit de démontrer que $\ker(u-Id_E)\cap\operatorname{Im}(u-Id_E)=\{0\}$. En effet, si ceci est vérifié, on aura automatiquement par le théorème du rang que la somme directe $\ker(u-Id_E)\oplus\operatorname{Im}(u-Id_E)$ est de dimension $\dim(E)$, et donc est égale à E. Prenons donc $x\in\ker(u-Id_E)\cap\operatorname{Im}(u-Id_E)$. On peut alors écrire x=u(y)-y, et u(x)=x. Il vient $u^2(y)=u(x)+u(y)=x+u(y)=2u(y)-y$ et donc $y\in\ker(u-Id_E)^2$. D'après la question précédente, y est élément de $\ker(u-Id_E)$ et donc x=0.
- 3. Prenons $x \in E$ et décomposons le en $x = x_1 + x_2$ dans la somme directe $E = \ker(u Id_E) \oplus \operatorname{Im}(u Id_E)$. On a $u(x_1) = x_1$ tandis que, si $x_2 = u(y) y$, on a

$$u^{k}(x_{2}) = u^{k+1}(y) - u^{k}(y).$$

Il vient

$$u_n(x) = x_1 + \frac{1}{n}(u^n(y) - y) \to x_1$$

lorsque n tend vers $+\infty$ puisque, comme auparavant, la suite $(u^n(y))$ est bornée. Donc, pour chaque x, la suite $(u_n(x))$ converge vers P(x) où P est la projection sur $\ker(u-Id_E)$ parallèlement à $\operatorname{Im}(u-Id_E)$. Mais on veut plus. On veut prouver que $\|u_n-P\|\to 0$. Introduisons v l'endomorphisme de $\operatorname{Im}(u-Id_E)=F$ induit par u. $v-Id_F$ est inversible (son noyau est restreint à $\{0\}$) et $y=(v-Id_F)^{-1}(x_2)$. Notons aussi Q la projection sur $\operatorname{Im}(u-Id_E)$ parallèlement à $\ker(u-Id_E)$, de sorte que $x_2=Q(x)$. Le calcul précédent donne alors

$$u_n(x) = P(x) + \frac{1}{n}(u^n(v(Q(x))) - Q(x)).$$

On en déduit :

$$||u_n(x) - P(x)|| \le \frac{1}{n} (||v|| ||Q|| + ||Q||) ||x||$$

i.e.

$$||u_n - P|| \le \frac{1}{n} (||v|| ||Q|| + ||Q||).$$

Ceci prouve bien que $||u_n - P||$ tend vers 0.

Exercice 23.

Soit E un \mathbb{R} -espace vectoriel normé de dimension finie, et K un compact de E tel que $0 \in K$. On note H l'ensemble des $u \in \mathcal{L}(E)$ tels que $u(K) \subset K$. Montrer que pour tout $u \in H$, on a

 $|\det u| \le 1.$

Correction

On munit $\mathcal{L}(E)$ de la norme usuelle associée à celle de E:

$$||u|| = \sup_{||x|| \le 1} ||u(x)||.$$

 $\mathcal{L}(E)$ est ainsi un espace vectoriel normé de dimension finie. Montrons que H est compact :

— H est borné : en effet, fixons $u \in H$ et soit $x \in E$ avec ||x|| = 1. Puisque $0 \in K$, il existe $\varepsilon > 0$ tel que $\overline{B}(0,\varepsilon) \in K$. Ceci entraine $\varepsilon x \in K$. Maintenant, puisque u est continue et que K est compact, il existe M > 0 tel que $||u(y)|| \leq M$ si $y \in K$. On en déduit

$$||u(x)|| \le \frac{||u(\varepsilon x)||}{\varepsilon} \le \frac{M}{\varepsilon} ||x||.$$

Ainsi, on a prouvé que $||u|| \leq \frac{M}{\varepsilon}$.

— H est fermé : soit (u_n) une suite de H qui converge vers u. En particulier, pour tout x dans K, la suite $(u_n(x))$ converge vers u(x). Maintenant, puisque K est compact, donc fermé, $u(x) \in K$, et $u \in H$.

H étant fermé et borné dans un espace vectoriel normé de dimension finie, il est compact. Maintenant, l'application déterminant est continue, et l'image de H par cette application est donc bornée dans \mathbb{R} . Soit $u \in H$. Puisque $u(K) \subset K \implies u^n(K) \subset u^{n-1}(K) \subset \ldots K$, u^n est dans H. Mais la suite $\det(u^n) = \det(u)^n$ est bornée. Ceci n'est possible que si $|\det u| \leq 1$.