Feuille d'exercices n°11

1. Diagonalisation

Exercice 1.

Expliquer sans calculs pourquoi la matrice suivante n'est pas diagonalisable :

$$A = \left(\begin{array}{ccc} \pi & 1 & 2 \\ 0 & \pi & 3 \\ 0 & 0 & \pi \end{array} \right).$$

Exercice 2.

Diagonaliser les matrices suivantes :

$$A = \left(\begin{array}{ccc} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{array} \right), \ B = \left(\begin{array}{ccc} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{array} \right), C = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{array} \right).$$

On donnera aussi la matrice de passage de la base canonique à la base de vecteurs propres.

Exercice 3.

Soit A la matrice suivante :

$$A = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{array}\right).$$

Démontrer que A est diagonalisable et donner une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Exercice 4.

Soit A la matrice $\begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$.

- 1. Diagonaliser A.
- 2. Calculer A^n en fonction de n.
- 3. On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

1

pour $n \ge 0$. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et X_n . En déduire u_n, v_n et w_n en fonction de n.

Exercice 5.

Soient f, g deux endomorphismes du \mathbb{K} -espace vectoriel E de dimension finie tels que f est diagonalisable. Démontrer que f et g commutent si et seulement si les sous-espaces propres de f sont stables par g.

Exercice 6.

Soit E un \mathbb{K} -espace vectoriel et u, v deux endomorphismes de E.

- 1. Démontrer que si $u\circ v=v\circ u,$ alors ${\rm Im}(u)$ et ${\rm ker}(u)$ sont stables par v. La réciproque est-elle vraie?
- 2. On suppose désormais que u est un projecteur. Démontrer que $u \circ v = v \circ u$ si et seulement si $\ker(u)$ et $\operatorname{Im}(u)$ sont stables par v.

Exercice 7.

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$, et soit $f \in \mathcal{L}(E)$ de rang 1.

- 1. On suppose que f est diagonalisable. Démontrer que $f \circ f$ n'est pas l'endomorphisme nul.
- 2. Réciproquement, on suppose que $f \circ f$ n'est pas l'endomorphisme nul, et on note $u \in E$ tel que $\mathrm{Im}(f) = \mathrm{vect}(u)$.
 - (a) Démontrer que u est un vecteur propre associé à une valeur propre non nulle.
 - (b) En déduire que f est diagonalisable.

2. Trigonalisation

Exercice 8.

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

- 1. Montrer que f est trigonalisable.
- 2. Montrer que l'espace propre associé à la valeur propre 1 est de dimension 1. Montrer que u=(1,1,0) est un vecteur non-nul de cet espace propre.
- 3. Montrer que v = (0,0,1) est tel que $(f \mathrm{id}_{\mathbb{R}^3})(v) = u$.
- 4. Chercher un vecteur propre w associé à la valeur propre 2. Montrer que (u, v, w) est une base de \mathbb{R}^3 . Calculer la matrice T de f dans la base (u, v, w).

- 5. Calculer $f^k(v)$ pour tout $k \in \mathbb{N}$. En déduire T^k .
- 6. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 9.

On considère la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right).$$

A est-elle diagonalisable? Montrer que A est semblable à la matrice

$$B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Exercice 10.

Trigonaliser les matrices suivantes :

$$A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}.$$

Exercice 11.

Réduire (i.e. diagonaliser/trigonaliser) les matrices suivantes et déterminer leurs sous-espaces caractéristiques :

$$A = \begin{pmatrix} 2 & 8 & -2 \\ -1 & 8 & -1 \\ 2 & -8 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -6 & -3 \\ 2 & 7 & 2 \\ -1 & -2 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 8 & -3 \\ -1 & 8 & -1 \\ 3 & -8 & 7 \end{pmatrix}$$
$$D = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \\ 3 & 5 & 5 \end{pmatrix} \quad E = \begin{pmatrix} 5 & -4 & -1 \\ 1 & 2 & 0 \\ -1 & 4 & 5 \end{pmatrix}$$