Corrigé de la feuille d'exercices n°11

1. Diagonalisation

Exercice 1.

Expliquer sans calculs pourquoi la matrice suivante n'est pas diagonalisable :

$$A = \left(\begin{array}{ccc} \pi & 1 & 2 \\ 0 & \pi & 3 \\ 0 & 0 & \pi \end{array} \right).$$

Correction.

La matrice A étant triangulaire supérieure, ses valeurs propres sont données par les éléments de la diagonale. La seule valeur propre de A est donc π . Si A était diagonalisable, alors il existerait une matrice $P \in GL_3(\mathbb{R})$ telle que

$$A = P(\pi I_3)P^{-1}.$$

Mais puisque I_3 commute avec toutes les matrices, on aurait

$$A = \pi I_3 P P^{-1} = \pi I_3.$$

Ce n'est pas le cas : A n'est donc pas diagonalisable.

Exercice 2.

Diagonaliser les matrices suivantes :

$$A = \left(\begin{array}{ccc} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{array}\right), \ B = \left(\begin{array}{ccc} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{array}\right), C = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{array}\right).$$

On donnera aussi la matrice de passage de la base canonique à la base de vecteurs propres.

Correction.

Procédons d'abord avec A. Son polynôme caractéristique vaut

$$\chi_A(X) = (X-1)(X-2)(X+4).$$

Il est scindé à racines simples, ce qui assure que A est diagonalisable. Il suffit de chercher pour chaque valeur propre un vecteur propre associé. D'abord pour 1, on résoud AX=X, c'est-à-dire le système :

$$\begin{cases}
-x + 2y - z &= 0 \\
3x - 3y &= 0 \\
-2x + 2y &= 0
\end{cases}$$

Ce système est équivalent à x=y=z et un vecteur propre est donc donnée par $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. On fait

de même pour 2 et -4, et on trouve respectivement $\begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$. La matrice A est donc semblable à diag(1, 2, -4), la matrice de passage étant

$$P = \left(\begin{array}{rrr} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array}\right).$$

Poursuivons avec B dont on calcule le polynôme caractéristique :

$$P_B(X) = X^3 - 5X^2 + 8X - 4.$$

1 est racine évidente, on factorise par X-1 et finalement on trouve

$$\chi_B(X) = (X - 1)(X - 2)^2.$$

On cherche le sous-espace propre associé à 1 en résolvant BX = X, c'est-à-dire le système :

$$\begin{cases}
-x + 3y + 2z &= 0 \\
-2x + 4y + 2z &= 0 \\
2x - 3y - z &= 0
\end{cases}$$

Ce système est équivalent à x = y = -z. Ainsi, le sous-espace propre associé à 1 est de dimension Ce système est equivaient à \mathbb{Z}_{-2} , 1, engendré par le vecteur propre $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$. L'étude du sous-espace propre associé à 2 conduit

au système:

$$\begin{cases}
-2x + 3y + 2z &= 0 \\
-2x + 3y + 2z &= 0 \\
2x - 3y - 2z &= 0
\end{cases}$$

Ces trois équations se ramènent à 2x-3y-2z=0, qui est l'équation d'un plan de \mathbb{R}^3 . Le sous-espace propre associé à 2 est donc de dimension 2, et une base est donnée par les vecteurs

 $\left(\begin{array}{c}2\\0\end{array}\right)$ et $\left(\begin{array}{c}0\\1\end{array}\right)$. B est donc semblable à la matrice diag(1,2,2), la matrice de passage P étant

$$P = \left(\begin{array}{rrr} 1 & 3 & 1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{array}\right).$$

Le polynôme caractéristique de C est $\chi_C(X) = -(1-X)^2(2-X)$. On procède exactement comme précédemment, et on trouve que (u_1, u_2) forme une base de l'espace propre associé à la valeur propre 1, avec $u_1 = (1, 1, 0)$ et $u_2 = (0, 1, 1)$ et que (u_3) forme une base de l'espace propre associé à la valeur propre 2, avec $u_3 = (0,0,1)$. Ainsi, C s'écrit $C = PDP^{-1}$ avec D la matrice diagonale

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

 et

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Exercice 3.

Soit A la matrice suivante :

$$A = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{array}\right).$$

Démontrer que A est diagonalisable et donner une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Correction.

Le calcul du polynôme caractéristique ne pose pas de problèmes, et on trouve, sous forme factorisée, $\chi_A(x) = (2-x)(4-x)^2$. On ne peut pas conclure directement que A est diagonalisable, il faut déterminer une base des sous-espaces propres associés. Pour la valeur propre 2, on résoud

l'équation AX = 2X avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. On trouve le système

$$\begin{cases} x = x \\ y = -2x \\ z = x \end{cases}$$

Ainsi, le sous-espace propre associé à la valeur propre 2 est le sous-espace vectoriel engendré par le vecteur $u_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. Cherchons ensuite le sous-espace propre associé à la valeur propre 4.

On doit résoudre AX = 4X et on trouve cette fois le système :

$$\begin{cases} x = x \\ y = y \\ z = -x \end{cases}$$

Une base de l'espace propre associé à la valeur propre 4 est donc donné par (u_2, u_3) , avec $u_2 =$

 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ et } u_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}. \text{ Les dimensions des sous-espaces propres sont égales aux multiplicités}$

des valeurs proprès correspondantes, donc A est diagonalisable. Plus précisément on a $A=PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Il vient alors que, pour tout $n \in \mathbb{N}$, on a $A^n = PD^nP^{-1}$. D^n est tout simplement égale à

$$D = \left(\begin{array}{ccc} 2^n & 0 & 0\\ 0 & 4^n & 0\\ 0 & 0 & 4^n \end{array}\right).$$

Après un petit calcul, on trouve que

$$P^{-1} = -\frac{1}{2} \begin{pmatrix} -1 & 0 & -1 \\ -2 & -2 & -2 \\ -1 & 0 & 1 \end{pmatrix}.$$

On en déduit finalement que

$$A^{n} = \frac{1}{2} \begin{pmatrix} 2^{n} + 4^{n} & 0 & 2^{n} - 4^{n} \\ 2(4^{n} - 2^{n}) & 2 \cdot 4^{n} & 2(4^{n} - 2^{n}) \\ 2^{n} - 4^{n} & 0 & 2^{n} + 4^{n} \end{pmatrix}.$$

Exercice 4.

Soit A la matrice $\begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$.

- 1. Diagonaliser A
- 2. Calculer A^n en fonction de n.
- 3. On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

pour $n \ge 0$. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et X_n . En déduire u_n, v_n et w_n en fonction de n.

Correction.

1. On calcule le polynôme caractéristique de A. On trouve

$$P_A(X) = (X+1)(X-2)(X-5).$$

 $A \in M_3(\mathbb{R})$ a trois valeurs propres, -1, 2, 5: A est donc diagonalisable. On cherche les sous-espaces propres associés. Pour -1, on a, pour X = (x, y, z),

$$AX = -X \iff \begin{cases} -3x - 6y = 0 \\ 3x + 6y = 0 \\ 3x + 6y + 6z = 0 \end{cases} \iff \begin{cases} x = -2y \\ y = y \\ z = 0 \end{cases}$$

Le vecteur (2, -1, 0) est donc un vecteur propre de A associé à la valeur propre -1. On fait de même avec 2, et on trouve (par exemple) le vecteur propre (1, -1, 1) et pour 5, et on trouve le vecteur propre (0, 0, 1). Ainsi, en posant

$$P = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

on a $PDP^{-1} = A$. Le calcul de P^{-1} donne

$$P^{-1} = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & -2 & 0 \\ 1 & 2 & 1 \end{array}\right).$$

2. On a $A = PDP^{-1}$, ce qui entraı̂ne par récurrence $A = PD^nP^{-1}$. D^n se calcule facilement en mettant les coefficients de la diagonale à la puissance n. En effectuant les deux produits de matrice, on trouve finalement :

$$A^{n} = \begin{pmatrix} 2(-1)^{n} - 2^{n} & 2(-1)^{n} - 2^{n+1} & 0\\ (-1)^{n+1} + 2^{n} & (-1)^{n+1} + 2^{n+1} & 0\\ -2^{n} + 5^{n} & -2^{n+1} + 2.5^{n} & 5^{n} \end{pmatrix}.$$

3. On a $X_{n+1} = AX_n$. Par récurrence, on a $X_n = A^n X_0$. Grâce au calcul de A^n effectué à la question précédente, on trouve

$$\begin{cases} u_n &= (2(-1)^n - 2^n)u_0 + (2(-1)^n - 2^{n+1})v_0 \\ v_n &= ((-1)^{n+1} + 2^n)u_0 + ((-1)^{n+1} + 2^{n+1})v_0 \\ w_n &= (-2^n + 5^n)u_0 + (-2^{n+1} + 2.5^n)v_0 + 5^n w_0. \end{cases}$$

Exercice 5.

Soient f, g deux endomorphismes du \mathbb{K} -espace vectoriel E de dimension finie tels que f est diagonalisable. Démontrer que f et g commutent si et seulement si les sous-espaces propres de f sont stables par g.

Correction.

D'abord si f et g commutent, on sait que $\ker(P(f))$ est stable par g pour tout polynôme P, en particulier pour les polynômes $P(X) = X - \lambda$. Ainsi, chaque sous-espace propre de f est stable par g. Réciproquement, on suppose que g laisse stable tous les sous-espaces propres de f. Soit E_{λ} un tel sous-espace propre et soit $x \in E_{\lambda}$. Alors d'une part

$$g(f(x)) = g(\lambda x) = \lambda g(x)$$

et d'autre part, puisque $q(x) \in E_{\lambda}$ on a aussi

$$f(g(x)) = \lambda g(x).$$

Autrement dit, si $x \in E_{\lambda}$, on a f(g(x)) = g(f(x)). Maintenant, comme f est diagonalisable, E est somme directe des sous-espaces propres de f. Écrivant tout $x \in E$ comme somme de x_i , où $x_i \in E_{\lambda_i}$, on prouve que f(g(x)) = g(f(x)) et donc que g et f commutent.

Exercice 6.

Soit E un \mathbb{K} -espace vectoriel et u, v deux endomorphismes de E.

1. Démontrer que si $u \circ v = v \circ u$, alors $\mathrm{Im}(u)$ et $\ker(u)$ sont stables par v. La réciproque

est-elle vraie?

2. On suppose désormais que u est un projecteur. Démontrer que $u \circ v = v \circ u$ si et seulement si $\ker(u)$ et $\operatorname{Im}(u)$ sont stables par v.

Correction.

1. Commençons par prouver que $\operatorname{Im} u$ est stable par v. Soit $y \in \operatorname{Im}(u)$, y = u(x) avec $x \in E$. Alors $v(y) = v(u(x)) = u(v(x)) \in \operatorname{Im}(u)$. Prenons ensuite $z \in \ker(u)$. Alors u(z) = 0 et u(v(z)) = v(u(z)) = 0 et donc $v(z) \in \ker(u)$. La réciproque est fausse. En effet, si u et v sont tous les deux des automorphismes, il est clair que $\ker(u) = \{0\}$ et $\operatorname{Im}(u) = E$ sont stables car v est bijective. Mais il n'y a aucune raison pour que u et v commutent. Donnons un exemple, en prenant pour u et v les automorphismes de \mathbb{R}^2 dont les matrices dans la base canonique sont respectivement

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

On vérifie aisément que $AB \neq BA$.

2. Puisque u est un projecteur, on sait que $E=\ker(u)\oplus \operatorname{Im}(u)$. Prenons $x\in E$ et écrivons le x=y+z dans cette décomposition. Alors

$$u(v(x)) = u(v(y)) + u(v(z)).$$

Mais $v(y) \in \ker(u)$ et donc u(v(y)) = 0 et $v(z) \in \operatorname{Im}(u)$ et donc u(v(z)) = v(z). D'autre part,

$$v(u(x)) = v(0+z) = v(z).$$

On a donc bien $u \circ v = v \circ u$.

Exercice 7.

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$, et soit $f \in \mathcal{L}(E)$ de rang 1.

- 1. On suppose que f est diagonalisable. Démontrer que $f \circ f$ n'est pas l'endomorphisme nul.
- 2. Réciproquement, on suppose que $f \circ f$ n'est pas l'endomorphisme nul, et on note $u \in E$ tel que Im(f) = vect(u).
 - (a) Démontrer que u est un vecteur propre associé à une valeur propre non nulle.
 - (b) En déduire que f est diagonalisable.

Correction.

- 1. On sait, puisque le rang de f est 1, et donc que la dimension de son noyau est n-1, que 0 est valeur propre de f d'ordre n-1. Si f est diagonalisable, alors il existe une base de vecteurs propres pour f et donc il existe $x \in E$ vecteur propre associé à une valeur propre non nulle. Mais si $f(x) = \lambda x$, avec $\lambda \neq 0$, alors $f \circ f(x) = \lambda^2 x$ avec $\lambda^2 \neq 0$, et donc $f \circ f$ n'est pas l'endomorphisme nul.
- 2. (a) On a $f(u) \in \text{Im}(f) = \text{vect}(u)$, et donc il existe $\lambda \in \mathbb{R}$ tel que $f(u) = \lambda u$. Si λ était

- égal à 0, alors, puisque pour tout $x \in \mathbb{R}$, on a $f(x) = \lambda_x u$ pour un certain $\lambda_x \in \mathbb{R}$, on aurait $f \circ f(x) = 0$, et donc $f \circ f = 0$, ce qui n'est pas le cas. Donc $\lambda \neq 0$.
- (b) Notons $\lambda \neq 0$ tel que $f(u) = \lambda u$. Alors λ est valeur propre de f, et son espace propre est de dimension au moins égale à 1. De plus, 0 est valeur propre de f, et son espace propre est de dimension égale à n-1. La somme des dimensions des espaces propres étant supérieure ou égale à n (et donc en réalité égale à n), f est diagonalisable.

2. Trigonalisation

Exercice 8.

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

- 1. Montrer que f est trigonalisable.
- 2. Montrer que l'espace propre associé à la valeur propre 1 est de dimension 1. Montrer que u=(1,1,0) est un vecteur non-nul de cet espace propre.
- 3. Montrer que v = (0,0,1) est tel que $(f \mathrm{id}_{\mathbb{R}^3})(v) = u$.
- 4. Chercher un vecteur propre w associé à la valeur propre 2. Montrer que (u, v, w) est une base de \mathbb{R}^3 . Calculer la matrice T de f dans la base (u, v, w).
- 5. Calculer $f^k(v)$ pour tout $k \in \mathbb{N}$. En déduire T^k .
- 6. Calculer A^k pour tout $k \in \mathbb{N}$.

Correction.

- 1. On calcule le polynôme caractéristique de f. On trouve $P_f(X) = (1-X)^2(2-X)$. Puisqu'il a toutes ses racines dans \mathbb{R} , l'endomorphisme f est trigonalisable.
- 2. Pour u = (x, y, z), on a

$$f(u) = u \iff \begin{cases} z = 0 \\ -x + y + z = 0 \\ x - y = 0 \end{cases} \iff \begin{cases} x = x \\ y = x \\ z = 0 \end{cases}$$

Une base de ker(f - I) est donc donnée par le vecteur (1, 1, 0).

- 3. On a f(v) = (1, 1, 1) d'où f(v) v = u.
- 4. On cherche l'espace propre associé à la valeur propre 2. On a, pour w=(x,y,z),

$$f(w) = 2w \iff \begin{cases} -x + z &= 0 \\ -x + z &= 0 \\ x - y - z &= 0 \end{cases} \iff \begin{cases} x &= x \\ y &= 0 \\ z &= x \end{cases}$$

Le vecteur w = (1,0,1) est donc un vecteur propre de f associé à la valeur propre 2. On vérifie facilement que la famille (u,v,w) est une famille libre de \mathbb{R}^3 , donc une base. La

matrice de f dans cette base est donnée par

$$T = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

5. On montre par récurrence sur k que $f^k(v) = v + ku$. En effet, c'est vrai pour k = 1 et si c'est vrai au rang k, alors

$$f^{k+1}(v) = f(v+ku) = f(v) + kf(u) = v + u + ku = v + (k+1)u.$$

Puisque $f^k(u) = u$ et $f^k(w) = 2^k w$, on en déduit

$$T^k = \left(\begin{array}{ccc} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^k \end{array}\right).$$

6. Soit Q la matrice de passage de la base canonique de \mathbb{R}^3 à la base (u,v,w). Q est donnée par

$$Q = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right)$$

et on a la relation $A=QTQ^{-1}$. Par récurrence, on montre que $A^k=QT^kQ^{-1}$. Il reste à calculer Q^{-1} et à utiliser le résultat de la question précédente. On trouve

$$Q^{-1} = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{array} \right)$$

et

$$A^k = \begin{pmatrix} 2^k - k & k + 1 - 2^k & k \\ -k & k + 1 & k \\ 2^k - 1 & 1 - 2^k & 1 \end{pmatrix}.$$

Exercice 9.

On considère la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right).$$

A est-elle diagonalisable? Montrer que A est semblable à la matrice

$$B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Correction.

Le polynôme caractéristique de A est $\chi_A(X) = -(1-X)^3$. 1 est la seule racine de ce polynôme, et comme $A \neq I_3$, A n'est pas diagonalisable. Cherchons l'espace propre associé à la valeur propre 1. Notons f l'endomorphisme canoniquement associé à A. On a $(x,y,z) \in \ker(f-I) \iff y+z=0$. L'espace propre associé est donc de dimension 2, de base (u_1,u_2) avec $u_1=(1,0,0)$ et $u_2=(0,1,-1)$. On cherche ensuite un troisième vecteur u_3 tel que $f(u_3)=u_2+u_3$. Posons $u_3=(x,y,z)$. Alors

$$f(u_3) = u_2 + u_3 \iff \begin{cases} x = x \\ -z = 1 + y \iff z = -1 - y. \\ y + 2z = -1 + z \end{cases}$$

Posons alors $u_3 = (0, 0, -1)$. Il est clair que la famille (u_1, u_2, u_3) est une base de \mathbb{R}^3 et dans cette base, la matrice de l'endomorphisme canoniquement associé à A est B. Donc A est semblable à B.

Exercice 10.

Trigonaliser les matrices suivantes :

$$A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}.$$

Correction.

On commence par calculer le polynôme caractéristique de A, on trouve $\chi_A(X) = -(X-3)(X-2)^2$. On cherche ensuite le sous-espace propre associé à la valeur propre 3, en résolvant AX = 3X. Un rapide calcul montre qu'il est engendré par le vecteur propre $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. On cherche ensuite le sous-espace propre associé à la valeur propre 2, en résolvant AX = 2X. On trouve cette fois qu'il est engendré par le vecteur propre $u_2 = \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix}$. Pour trigonaliser la matrice, il suffit de compléter

la base par un troisième vecteur indépendant des deux premiers, par exemple $u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. On

a
$$Au_3 = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix} = -6u_1 + u_2 + 2u_3$$
. La matrice A est donc semblable à la matrice

$$\left(\begin{array}{ccc}
3 & 0 & -6 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)$$

la matrice de passage étant

$$\left(\begin{array}{ccc} 1 & 4 & 0 \\ 1 & 3 & 0 \\ 1 & 4 & 1 \end{array}\right).$$

Il n'y a bien sûr pas unicité ni de la matrice triangulaire supérieure à laquelle A est semblable, ni de la matrice de passage. D'ailleurs, dans l'exemple de la matrice B, nous allons donner une forme plus précise à la trigonalisation. Le polynôme caractéristique de B est égal à $\chi_B(X) = -(X+1)(X-1)^2$. On cherche une base de l'espace propre associé à la valeur propre -1 en

résolvant l'équation BX = -X. On trouve que le vecteur $u_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ engendre cet espace propre. Ensuite, on cherche une base de l'espace propre associé à la valeur propre 1 en résolvant

l'équation BX = X. On trouve que le vecteur $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ engendre cet espace propre. On

cherche enfin un vecteur u_3 tel que $Bu_3 = u_3 + u_2$. On obtient que le vecteur $u_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$ convient. Finalement, on a prouvé que $B = PTP^{-1}$, avec

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}.$$

Remarquons qu'on peut toujours réduire une matrice trigonalisable de sorte que, hormi les coefficients diagonaux, les seuls coefficients non-nuls sont situés juste au-dessus de la diagonale, et ces coefficients hors-diagonale sont égaux à 0 ou 1.

Exercice 11.

Réduire (i.e. diagonaliser/trigonaliser) les matrices suivantes et déterminer leurs sous-espaces caractéristiques :

$$A = \begin{pmatrix} 2 & 8 & -2 \\ -1 & 8 & -1 \\ 2 & -8 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -6 & -3 \\ 2 & 7 & 2 \\ -1 & -2 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 8 & -3 \\ -1 & 8 & -1 \\ 3 & -8 & 7 \end{pmatrix}$$
$$D = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \\ 3 & 5 & 5 \end{pmatrix} \quad E = \begin{pmatrix} 5 & -4 & -1 \\ 1 & 2 & 0 \\ -1 & 4 & 5 \end{pmatrix}$$

Correction.

$$A = PDP^{-1} \text{ où } D = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ et } P = \begin{pmatrix} -2 & -2 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$

$$B = PTP^{-1} \text{ où } T = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & -1 & -2 \end{pmatrix}$$

$$C = PTP^{-1} \text{ où } T = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix} \text{ et } P = \begin{pmatrix} -2 & -2 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$

$$D = PTP^{-1} \text{ où } T = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & -1 & -2 \end{pmatrix}$$

$$E = PTP^{-1} \text{ où } T = \begin{pmatrix} 4 & 2 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix} \text{ et } P = \begin{pmatrix} -2 & -2 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$