
Corrigé de la feuille d’exercices no14
Mathématiques spéciales

1. Séries de matrices

Exercice 1.Exercice 1.

Calculer l’exponentielle des matrices suivantes :

A =

 3 0 −1
2 4 2
−1 0 3

 B =

1 1 −1
0 1 0
1 0 1

 C =

3 0 0
0 2 1
0 0 2



Correction.

1. On a A = PDP−1 où

D =

2 0 0
0 4 0
0 0 4

 et P =

 1 0 1
−2 1 0
1 0 −1


Donc

exp(A) = P

e2 0 0
0 e4 0
0 0 e4

P−1 =
1

2

 e2 + e4 0 e2 − e4

2(e4 − e2) e4 2(e4 − e2)
e2 − e4 0 e2 + e4

 .

2. On a B = PDP−1 où

D =

1 0 0
0 1 + i 0
0 0 1− i

 et P =

0 i −i
1 0 0
1 1 1


Donc

exp(B) = P

e 0 0
0 e1+i 0
0 0 e1−i

P−1 =

e cos(1) e sin(1) −e sin(1)
0 e 0

e sin(1) e(1− cos(1)) e cos(1)

 ∈ M3(R).

3. On a les résultats suivants :
— si M = diag(M1, ...,Mk) ∈ Mn(K) est diagonale par blocs où Mi ∈ Mpi

(K) avec∑k
i=1 pi = n, alors :

exp(M) = diag(exp(M1), ..., exp(Mk));

— si M,N communtent, alors exp(MN) = exp(M)exp(N).

Ainsi, comme C =

 3 0 0
0 2 1
0 0 2

 est diagonale par blocs, on calcule l’exponentielle de

chacun des blocs.
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On a exp(3) = e3 et on remarque que : C ′ =

(
2 1
0 2

)
= 2I2+E1,2 où 2I2 et E1,2 commutent,

donc exp(C ′) = exp(2I2)exp(E1,2).
De plus, E1,2 est nilpotente d’indice 2, donc, pour tout n ≥ 2, En

1,2 = 02 et ainsi :

exp(E1,2) =

+∞∑
n=0

En
1,2

n!
= I2 + E1,2

Par suite,

exp(C ′) = exp(2I2)exp(E1,2) = e2I2.(I2 + E1,2) = e2(I2 + E1,2)

Il en résulte que :

exp(C) =

(
exp(3) 0

0 exp(C ′)

)
=

 e3 0 0
0 e2 e2

0 0 e2

 .

Exercice 2.Exercice 2.

Soit A =

(
4/3 −5/6
5/3 −7/6

)
. Démontrer que la série

∑
An converge, et donner la valeur de

∑
n≥0 A

n.

Correction.

On va commencer par diagonaliser A. Le polynôme caractéristique de A est X2 − 1
6X − 1

6 dont
les racines sont 1

2 et −1
3 . De plus, la recherche des vecteurs propres donne A = PDP−1 avec

D =

(
1
2 0
0 −1

3

)
et P =

(
1 1
1 2

)
.

En particulier, on a aussi
P−1 =

(
2 −1
−1 1

)
.

Fixons maintenant N ∈ N, et utilisons que pour tout n ∈ N, on a An = PDnP−1. On obtient

N∑
n=0

An =

N∑
n=0

PDnP−1 = P

(
N∑

n=0

Dn

)
P−1.

Maintenant,

Dn =

( 1
2n 0

0 (−1)n

3n

)
,

de sorte que
N∑

n=0

Dn =

 1− 1

2N

1− 1
2

0

0
1− (−1)N+1

3N+1

1+ 1
3

 .
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On en déduit que la série
∑

n D
n converge et que

+∞∑
n=0

Dn =

(
2 0
0 3

4

)
.

Par continuité du produit matriciel, la série
∑

n A
n converge et

+∞∑
n=0

An = P

(
2 0
0 3

4

)
P−1

=

(
13
4

−5
4

5
2

−1
2

)

Exercice 3.Exercice 3.

Soit A la matrice  2 0 1
1 −1 −1
−1 2 2

 .

1. Calculer le polynôme caractéristique de A.
2. En déduire, pour t ∈ R, la valeur de exp(tA).

Correction.

1. Un calcul sans difficultés montre que χA(X) = (X − 1)3.
2. Posons N = A− I3. Alors, d’après le théorème de Cayley-Hamilton, on a N3 = 0, et donc

N est nilpotent d’indice 3. Ceci facilite grandement le calcul de l’exponentielle de N . En
effet, on a

exp(tN) =

+∞∑
n=0

tnNn

n!
= I3 + tN +

t2

2
N2.

D’autre part, puisque tA = tI3 + tN et que tI3 et tN commutent, on a

exp(tA) = exp(tI3) exp(tN) = et
(
I3 + tN +

t2

2
N2

)
.

On en déduit

exp(tA) = et

 t+ 1 t2 t2 + t
t t2 − 2t+ 1 t2 − t
−t −t2 + 2t −t2 + t+ 1

 .

Exercice 4.Exercice 4.

Soit A ∈ Mn(R). Démontrer que exp(A) est un polynôme en A.
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Correction.

Notons CA le polynôme caractéristique de A qui, rappelons-le, est annulateur pour A. Soit k ≥ 0.
Si on effectue la division euclidienne de Xk par CA(X), on obtient

Xk = CA(X)Qk(X) +Rk(X)

où deg(Rk) ≤ n− 1. Évaluons cette égalité en A. On obtient

Ak = Rk(A).

Ainsi, on a prouvé que pour tout k ≥ 0, Ak ∈ vect(Id, A, . . . , An−1). Notons F ce sous-espace
vectoriel de Mn(R). Alors, on sait que, pour tout n ≥ 0, la matrice Sn définie par Sn =

∑n
k=0

Ak

k!
est élément de F. Comme F est une partie fermée de Mn(R) (un sous-espace est toujours fermé
en dimension finie) et que (Sn) converge vers exp(A), on en déduit que exp(A) est élément de F ,
donc est un polynôme en A (de degré inférieur ou égal à n− 1).

Exercice 5.Exercice 5.

Soit A la matrice A =

 a b c
0 a b
0 0 a

. Calculer exp(A).

Correction.

Introduisons

B =

 0 1 0
0 0 1
0 0 0

 .

Il est facile de remarquer que

B2 =

 0 0 1
0 0 0
0 0 0


et Bn = 0 pour n ≥ 3. De plus, A = (aI3 + bB + cB2). Puisque I3, B et B2 commutent, on a

exp(A) = exp(a) exp(bB) exp(cB2).

Or, utilisant que Bn = 0 pour n ≥ 3, on trouve

exp(bB) =

+∞∑
n=0

(bB)n

n!

= I3 + bB +
b2B2

2
,

et

exp(cB2) =

+∞∑
n=0

(cB2)n

n!

= I3 + cB2.
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Il vient

exp(A) = ea
(
I3 + bB +

b2B2

2

)(
I3 + cB2

)
= ea

(
I3 + bB +

(
b2

2
+ c

)
B2

)
soit

exp(A) =

 ea bea
(

b2

2 + c
)
ea

0 ea bea

0 0 ea

 .

2. Convergence simple et uniforme des suites de fonctions

Exercice 6.Exercice 6.

Étudier la convergence simple et la convergence uniforme des suites de fonctions (fn) suivantes :
1. fn(x) = e−nx sin(2nx) sur R+ puis sur [a,+∞[, avec a > 0.
2. fn(x) =

1
(1+x2)n sur R, puis sur [a,+∞[ avec a > 0.

Correction.

1. L’inégalité |fn(x)| ≤ e−nx prouve que fn converge simplement vers la fonction nulle. Posons
g(x) = e−x sin(2x). On a fn(x) = g(nx), et donc la suite

‖fn‖∞ = ‖g‖∞ > 0

vaut une constante strictement positive, elle ne peut pas tendre vers 0 quand n → +∞ : la
convergence n’est pas uniforme sur R+. En revanche, si a > 0 et x ≥ a, on a :

|fn(x)| ≤ e−na,

ce qui prouve la convergence uniforme sur [a,+∞[.
2. Si x 6= 0, (fn(x)) tend vers 0 (c’est une suite géométrique de raison dans l’intervalle ]0, 1[),

et si x = 0, alors la suite (fn(x)) est constante égale à 1. La suite de fonctions (fn) converge
donc simplement vers la fonction f égale à 1 en 0 et égale à 0 partout ailleurs. La convergence
ne peut pas être uniforme sur R car chaque fonction fn est continue sur R et la fonction
limite ne l’est pas en 0. En revanche, la convergence est uniforme sur les intervalles du type
[a,+∞[ avec a > 0, puisque pour tout x ≥ a, on a

|fn(x)− f(x)| = 1

(1 + x2)n
≤ 1

(1 + a2)n

et le dernier terme de cette inégalité (qui ne dépend plus de x ∈ [a,+∞[), tend vers 0.
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Exercice 7.Exercice 7.

On pose fn : x 7→ ne−n2x2 . Étudier la convergence simple de (fn) sur R. Montrer la convergence
uniforme sur [a,+∞[, avec a > 0. Étudier la convergence uniforme sur ]0,+∞[.

Correction.

Les fonctions fn sont paires, on peut restreindre l’étude à [0,+∞[. fn(0) = n et donc (fn(0))

diverge. Pour x > 0, la comparaison des fonctions puissance et exponentielle fait que (ne−n2x2

)
tend vers 0. Donc la suite (fn) converge simplement vers la fonction nulle sur R\{0}. Passons à
l’étude de la convergence uniforme. Sur [a,+∞[, les fonctions (fn) sont positives et décroissantes.
On a donc

sup
x∈[a,+∞[

|fn(x)− 0| ≤ fn(a)

et comme (fn(a)) tend vers 0, il en est de même de (supx∈[a,+∞[ |fn(x) − 0|)n. La convergence
est donc uniforme sur [a,+∞[. Sur ]0,+∞[, on a

sup
x∈]0,+∞[

|fn(x)| ≥ fn(1/n) = ne−1 → +∞.

La convergence n’est donc pas uniforme sur ]0,+∞[.

Exercice 8.Exercice 8.

Soit (fn) une suite de fonctions décroissantes définies sur [0, 1] telle que (fn) converge simplement
vers la fonction nulle. Montrer que la convergence est en fait uniforme.

Correction.

Prenons x ∈ [0, 1]. Puisque fn est décroissante,

fn(1) ≤ fn(x) ≤ fn(0).

Il vient
‖fn‖∞ ≤ max(|fn(0)|, |fn(1)|).

Le terme de droite tend vers 0, et donc (fn) converge uniformément sur [0, 1] vers la fonction
nulle.

Exercice 9.Exercice 9.

Étudier la convergence simple puis uniforme des suites de fonctions (fn) suivantes sur les inter-
valles proposés :

1. Pour n ∈ N∗, fn : x 7→ arctan(x+
1

n
) sur R.

2. Pour n ∈ N, fn : x 7→ nx

1 + n2x2
sur R+ puis sur [a,+∞[ où a > 0.

3. Pour n ∈ N, fn : x 7→ xn sin(x) sur [0, 1].
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4. Pour n ∈ N∗, fn : x 7→ nαxn(1− x) sur [0, 1] où α ∈ R.

5. Pour n ∈ N, fn : x 7→ xne−x

n!
sur R+.

6. Pour n ∈ N, fn : x 7→

{
(1− x

n )
n si x ≤ n

0 sinon
sur R+.

Correction.

1. ⋆ CVS sur R+.
Soit x ∈ R. Étudions la nature de (fn(x))n∈N∗ .
On a, par continuité de la fonction f = arctan sur R :

arctan
(
x+

1

n

)
−−−−−→
n→+∞

arctan(x).

Par suite, (fn(x))n∈N∗ converge.
Ceci étant vrai pour tout x ∈ R, la suite (fn)n∈N∗ converge simplement sur R et ce,
vers la fonction arctan.

⋆ CVU sur R.
Soit n ∈ N∗. Pour tout x ∈ R, on a :

|fn(x)− f(x)| =
∣∣∣∣arctan

(
x+

1

n

)
− arctan(x)

∣∣∣∣ .
Comme arctan est dérivable sur R et que, pour tout x ∈ R, |arctan′(x)| = 1

1+x2 ≤ 1,
d’après l’inégalité des accroissements finis, on a :∣∣∣∣arctan

(
x+

1

n

)
− arctan(x)

∣∣∣∣ ≤ 1.

((
x+

1

n

)
− x

)
=

1

n
.

D’où fn − f est bornée sur R et :

‖fn − f‖∞ ≤ 1

n
−−−−−→
n→+∞

0.

Par suite, (fn)n∈N∗ converge uniformément vers f sur R.
Remarque : on aurait pu utiliser la formule d’addition de la fonction arctan (à redé-
montrer par le lecteur !) : pour tous a, b ∈ R,

arctan(a) + arctan(b) =


= arctan

(
a+ b

1− ab

)
si ab < 1,

= ±π
2 si ab = 1,

= arctan
(

a+ b

1− ab

)
± π si ab > 1.

mais c’était tout de même moins évident !
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2. ⋆ CVS sur R+.
Soit x ∈ R. Étudions la nature de (fn(x))n∈N.
On a :

nx

1 + n2x2

= 0 −−−−−→
n→+∞

1 si x = 0

∼
n→+∞

nx
1+n2x2 = 1

nx −−−−−→
n→+∞

0 si x > 0

Par suite, (fn(x))n∈N∗ converge.
Ceci étant vrai pour tout x ∈ R+, la suite (fn)n∈N∗ converge simplement sur R+ et
ce, vers la fonction nulle.

⋆ CVU sur R.
Soit n ∈ N. Pour tout x ∈ R, on a :

|fn(x)− f(x)| = nx

1 + n2x2
.

On étudie la fonction gn : x 7→ nx
1+n2x2 sur R+. Celle-ci est dérivable sur R+, et on a

g′n(x) = n
1− n2x2

(1 + n2x2)2
.

x

g′n(x)

gn(x)

0
1

n
1

0 + 0 −

00

gn(
1
n )gn(
1
n )

00

Par suite, on a :

‖fn − f‖∞ = gn(
1

n
) =

n 1
n

1 + n2( 1n )
2
=

1

2
−−−−−→
n→+∞

1

2
6= 0

Donc fn − f est bornée sur R+ et ‖fn − f‖∞ ↛ 0.
Par suite, la suite (fn)n∈N ne converge pas uniformément sur R+.
Remarque : on aurait également pu remarquer que (fn−f)(x) = g(nx) avec g : t 7→ t

1+t2

pour calculer sa norme infinie.

⋆ Soit a > 0. CVU sur [a,+∞[.
Soit n ∈ N. Pour tout x ∈ R, on a :

|fn(x)− f(x)| = nx

1 + n2x2
.

La même étude de fonction mais cette fois-ci sur [a,+∞[ nous donne :

‖fn − f‖∞ =

{
gn(

1
n ) =

1
2 si n < 1

a

gn(a) =
na

1+n2a2 si n ≥ 1
a
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donc, pour tout entier n ≥ 1
a , on a :

‖fn − f‖∞ =
na

1 + n2a2
−−−−−→
n→+∞

0

D’où’ fn − f est bornée sur [a,+∞[ et ‖fn − f‖∞ −−−−−→
n→+∞

0.
Par suite, la suite (fn)n∈N converge uniformément sur [a,+∞[ vers la fonction nulle.

3. Pour n ∈ N∗, fn : x 7→ nαxn(1− x) sur [0, 1] où α ∈ R.

4. Pour n ∈ N, fn : x 7→ xne−x

n!
sur R+.

5. Pour n ∈ N, fn : x 7→

{
(1− x

n )
n si x ≤ n

0 sinon
sur R+.

3. Convergence simple des séries de fonctions

Exercice 10.Exercice 10.

Pour n ≥ 1 et x ∈ R, on pose un(x) = nx2e−x
√
n.

1. Démontrer que la série
∑

n un converge simplement sur R+.

Correction.

1. Soit x ≥ 0 fixé. Alors n2un(x) = x2e−x
√
n+3 ln n tend vers 0. Par comparaison à une série

de Riemann convergente, la série
∑

n un(x) est convergente.

Exercice 11.Exercice 11.

Soit un(x) = (−1)n ln
(
1 + x

n(1+x)

)
défini pour x ≥ 0 et n ≥ 1.

1. Montrer que la série
∑

n≥1 un converge simplement sur R+.

Correction.

1. On va appliquer le critère des séries alternées. Il est clair que |un(x)| tend vers 0, reste à
voir que, pour x ≥ 0, on a |un+1(x)| ≤ |un(x)[. Mais,

x

(n+ 1)(1 + x)
≤ x

n(1 + x)
,

et on conclut par croissance de la fonction logarithme.
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Exercice 12.Exercice 12.

Pour x ∈ I = [0, 1], a ∈ R et n ≥ 1, on pose un(x) = naxn(1− x).
1. Étudier la convergence simple sur I de la série de terme général un.

Correction.

1. Pour x ∈]0, 1[, un(x) > 0 et
un+1(x)

un(x)
→ x ∈]0, 1[.

Par le critère de d’Alembert, la série de terme général un(x) est convergente. Si x = 1, alors
un(x) = 0 et la convergence est triviale. De plus, on a clairement S(1) = 0. La convergence
dans le cas x = 0 est elle aussi triviale.

Exercice 13.Exercice 13.

Pour x ≥ 0, on pose un(x) =
x

n2+x2 .

1. Montrer que la série
∑+∞

n=1 un converge simplement sur R+.

Correction.

1. Il est très facile de prouver la convergence simple sur R+. Pour x = 0, on a en effet un(0) = 0,
qui est bien le terme général d’une série convergente. Pour x > 0, on a un(x) ∼n→+∞

x
n2 ,

qui est aussi le terme général d’une série convergente.

Exercice 14.Exercice 14.

On considère la série de fonctions
∑

n≥2 un, avec un(x) =
xe−nx

ln n .
1. Démontrer que

∑
n≥2 un converge simplement sur R+.

Correction.

1. Pour x = 0, la série converge car un(0) = 0. Pour x > 0 fixé, on a

un(x) = o

(
1

n2

)
,

et donc la série
∑

n un(x) converge.

Exercice 15.Exercice 15.

On considère la série de fonctions
∑

n≥2 un, avec un(x) =
xe−nx

ln n .
1. Démontrer que

∑
n≥2 un converge simplement sur R+.
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Correction.

1. Pour x = 0, la série converge car un(0) = 0. Pour x > 0 fixé, on a

un(x) = o

(
1

n2

)
,

et donc la série
∑

n un(x) converge.

Exercice 16.Exercice 16.

Soit g : [0,+∞[→ R une fonction continue et bornée telle que g(0) = 0. On considère la suite de
fonctions définie sur [0,+∞[ par fn(x) = g(x)e−nx.

1.

Correction.

1. (a) Pour 0, fn(0) = 0 et la suite converge. Pour x > 0, la suite (g(x)e−nx) tend vers 0. La
suite de fonctions (fn) converge donc simplement vers 0.

Exercice 17.Exercice 17.

Soit f : R → R une fonction continue, et soit a < b deux réels. Pour x ∈ [a, b], on pose

fn(x) =

n−1∑
i=0

1

n
f

(
x+

i

n

)
.

1. Étudier la convergence simple de la suite (fn) sur [a, b].

Correction.

1. On reconnait dans fn(x) une somme de Riemann pour f sur l’intervalle [x, x+1], avec pas
de 1/n. Puisque f est continue, (fn(x)) converge vers

∫ x+1

x
f(t)dt pour tout x ∈ [a, b] (et

en fait, pour tout x ∈ R).
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