Mathématiques spéciales

Corrigé de la feuille d’exercices n°14

1. Séries de matrices

Exercice 1.

Calculer I'exponentielle des matrices suivantes :

3 0 -1 1 1 -1 300
A= 2 4 2 B=10 1 0 C=10 2 1
-1 0 3 1 0 1 0 0 2
1. Ona A= PDP~! ou
2 0 0 1 0 1
D=0 4 0)etP=|-2 1 0
00 4 1 0 -1
Donc
e2 0 0 e2+et 0 e2—¢t
exp(A)=P [0 e 0]|P'= 2(et —e?) et 2(et —e?)
0 0 ¢t e? — et 0 e + et

2. Ona B=PDP~! ou

1 0 0 0 ¢« —2
D=0 1+¢ 0 eteP=1[1 0 0
0 0 1—14 1 1 1
Donc
e 0 ecos(1) esin(1) —esin(1)
exp(B)=P |0 et 0 |P'= 0 e 0 € M3(R).
0 0 et esin(1) e(l —cos(1)) ecos(1)

3. On a les résultats suivants :
— si M = diag(My,..., M) € M,(K) est diagonale par blocs ou M; € M, (K) avec
Zle p; = n, alors :

exp(M) = diag(exp(M), ..., exp(My));

— si M, N communtent, alors exp(MN) = exp(M )exp(N).
310 0
Ainsi, comme C' = 012 1 est diagonale par blocs, on calcule I’exponentielle de

0(0 2
chacun des blocs.



On a exp(3) = €3 et on remarque que : C’ = (g ;
donc exp(C’) = exp(21;)exp(Ei 2).

De plus, Ej 2 est nilpotente d’indice 2, donc, pour tout n > 2, EY'y = 03 et ainsi :

) = 215+ F 5 ou 2[5 et E; 5 commutent,

+oo
En
exp(E12) = Z ;;2 =L+ FE
n=0 ’

Par suite,
eXp(C') = exp(2[2)exp(E1’2) = 6212.([2 + El’g) = 62(12 + ELQ)

Il en résulte que :

0
_ exp(3) ‘ 0 _ y 2 2
exp(C) = ( 0 |exp(C) ) 8 60 Z

Exercice 2.

4/3 -5/6

Soit A = (5/3 _7/6

) . Démontrer que la série ) 5 A™ converge, et donner la valeur de ) ., A™.

On va commencer par diagonaliser A. Le polynéme caractéristique de A est X2 — %X — % dont

les racines sont % et %1 De plus, la recherche des vecteurs propres donne A = PDP~! avec

19 1 1
— 2 —
o= (t 3) r=(i 3)

a2 =

P _(_1 1).

Fixons maintenant N € N, et utilisons que pour tout n € N, on a A® = PD"P~!. On obtient

N N N
A=Y pp"pl=p D" | pL.
=0 =0 =0

En particulier, on a aussi

Maintenant,

de sorte que

1- g
N 1_2l 0
E D" = 2 1_(71)1\7-*-1
— SNF1L
n=0 0 1+%



On en déduit que la série ) D™ converge et que
400
(20
> o= (5 3)
n=0 4

Par continuité du produit matriciel, la série > A" converge et

+oo
3 an P(g 2) P
n=0 4

13 =5
(1 %)
2 2

Exercice 3.

Soit A la matrice
1 -1 -1
-1 2 2

1. Calculer le polynéme caractéristique de A.

2. En déduire, pour t € R, la valeur de exp(tA).

1. Un calcul sans difficultés montre que x 4(X) = (X —1)3.

2. Posons N = A — I. Alors, d’aprés le théoréme de Cayley-Hamilton, on a N3 = 0, et donc
N est nilpotent d’indice 3. Ceci facilite grandement le calcul de l'exponentielle de N. En

effet, on a

X ¢ Nm 2,
exp(tN) = > —— = I+ tN+ S N7
n=0 :

D’autre part, puisque tA = tI3 + tN et que tI3 et tN commutent, on a

2
exp(tA) = exp(tl3) exp(tN) = €' <13 +tN + 2]\72) .

On en déduit
t+1 o 2+t
exp(tA) = €' t -2t +1 2 —t
-t —t2+2t —t2+t+1

Exercice 4.

Soit A € M, (R). Démontrer que exp(A) est un polynéme en A.



Notons C'4 le polyndéme caractéristique de A qui, rappelons-le, est annulateur pour A. Soit k£ > 0.
Si on effectue la division euclidienne de X* par C4(X), on obtient

XF = Cu(X)Qr(X) + Ri(X)

otl deg(Ry) < n — 1. Evaluons cette égalité en A. On obtient

AF = Ry (A).
Ainsi, on a prouvé que pour tout k > 0, A*¥ € vect(Id, A4, ..., A"~!). Notons F ce sous-espace
vectoriel de M,,(R). Alors, on sait que, pour tout n > 0, la matrice S,, définie par S,, = Z:o ‘;‘TT

est élément de F. Comme F est une partie fermée de M,,(R) (un sous-espace est toujours fermé
en dimension finie) et que (.S,,) converge vers exp(A), on en déduit que exp(A) est élément de F,
donc est un polynéme en A (de degré inférieur ou égal a n — 1).

Exercice 5.

Soit A la matrice A = . Calculer exp(A).

S O e
o o
SRS

Introduisons
0 1 0
B=| 0 0 1
0 0 0
Il est facile de remarquer que
0 0 1
B’=0 0 0
0 0 0

et B" = 0 pour n > 3. De plus, A = (al3 + bB + ¢B?). Puisque I3, B et B?> commutent, on a
exp(A) = exp(a) exp(bB) exp(cB?).

Or, utilisant que B™ = 0 pour n > 3, on trouve

exp(bB) =

et

exp(cB?) = Z



Il vient

soit

22

exp(4) = e° <13 + B4 > (Is + cB?)

2
b2
= ¢ <13+bB+ (2+c> B2>

2. Convergence simple et uniforme des suites de fonctions

Exercice 6.

Etudier la convergence simple et la convergence uniforme des suites de fonctions (f,,) suivantes :

1. fo(z) = e ™ sin(2nz) sur RT puis sur [a, +oo[, avec a > 0.

2. folx) = m sur R, puis sur [a, +oo[ avec a > 0.

1. L’inégalité | f,,(x)| < e~ ™ prouve que f,, converge simplement vers la fonction nulle. Posons

g(x) = e Tsin(2z). On a f,(z) = g(nx), et donc la suite

[frlleo = llglloc >0

vaut une constante strictement positive, elle ne peut pas tendre vers 0 quand n — +oo : la
convergence n’est pas uniforme sur R*. En revanche, sia >0et 2 > a, on a :

|[fn(2)] < e,

ce qui prouve la convergence uniforme sur [a, 4+00].

. Sixz#0, (fu(x)) tend vers 0 (c’est une suite géométrique de raison dans lintervalle ]0, 1[),

et si z = 0, alors la suite (f,,(z)) est constante égale a 1. La suite de fonctions (f,,) converge
donc simplement vers la fonction f égale a 1 en 0 et égale a 0 partout ailleurs. La convergence
ne peut pas étre uniforme sur R car chaque fonction f, est continue sur R et la fonction
limite ne I'est pas en 0. En revanche, la convergence est uniforme sur les intervalles du type
[a, +o00[ avec a > 0, puisque pour tout = > a, on a

1 1

et le dernier terme de cette inégalité (qui ne dépend plus de = € [a, +00[), tend vers 0.



Exercice 7.

On pose f, : © — ne=""*" Etudier la convergence simple de (f,,) sur R. Montrer la convergence

uniforme sur [a, +0ol, avec a > 0. Etudier la convergence uniforme sur ]0, +ocl.

Les fonctions f,, sont paires, on peut restreindre I’étude & [0, +oo[. f,(0) = n et donc (f,(0))

diverge. Pour z > 0, la comparaison des fonctions puissance et exponentielle fait que (ne’"QIQ)

tend vers 0. Donc la suite (f,) converge simplement vers la fonction nulle sur R\{0}. Passons a
I’étude de la convergence uniforme. Sur [a, +00[, les fonctions (f,,) sont positives et décroissantes.
On a donc

S |fn(x) _O| < fn(a)

z€[a,+oo[

et comme (f,(a)) tend vers 0, il en est de méme de (Sup,cpq,4o0f [fn(z) — 0])5. La convergence
est donc uniforme sur [a, +o00[. Sur |0, +o0[, on a

sup | fn(2)| > fn(1/n) = ne™t — +oo.
IE]0,+00[

La convergence n’est donc pas uniforme sur |0, +o0].

Exercice 8.

Soit (f,,) une suite de fonctions décroissantes définies sur [0, 1] telle que (f,,) converge simplement
vers la fonction nulle. Montrer que la convergence est en fait uniforme.

Prenons z € [0, 1]. Puisque f,, est décroissante,

fn(1) < fu(z) < fn(0).

Il vient

[fnlloo < max(|fn(0)], | fn(1)])-

Le terme de droite tend vers 0, et donc (f,) converge uniformément sur [0, 1] vers la fonction
nulle.

Exercice 9.

Etudier la convergence simple puis uniforme des suites de fonctions (f,) suivantes sur les inter-
valles proposés :

1
1. Pour n € N*, f,, : & — arctan(z + —) sur R.
n

2. PourneN, f, 1z~ sur R, puis sur [a, +oo[ ot @ > 0.

nw
1+ n2x2

3. Pour n € N, f,, :  — 2™ sin(z) sur [0, 1].



4. Pour n e N*| f,, : x = n®z™(1 — ) sur [0,1] ot « € R.

n,—x

5. PournGN,fn::er

sur Ry.

1-2)" siz<n

) sur Ry .
0 sinon

6. PournGN,fn::rH{

1. % CVSsur R;.

Soit z € R. Etudions la nature de (f,,())nen--
On a, par continuité de la fonction f = arctan sur R :

1
arctan (m + ) —— arctan(z).
n

n—-+o00

Par suite, (f(z))nen+ converge.
Ceci étant vrai pour tout z € R, la suite (fy,)nen+ converge simplement sur R et ce,
vers la fonction arctan.

* CVU sur R.
Soit n € N*. Pour tout x € R, on a :

|[fn(2) = f(2)] =

1
arctan [  + — | — arctan(z)
n

Comme arctan est dérivable sur R et que, pour tout = € R, |arctan’(z)| = -5 < 1,
d’apres l'inégalité des accroissements finis, on a :

NEE

1
Ifa = flls £ = ——0.

n n—+oo

1
arctan (a: + ) — arctan(x)
n

D’ou f,, — f est bornée sur R et :

Par suite, (f,,)nen+ converge uniformément vers f sur R.
Remarque : on aurait pu utiliser la formule d’addition de la fonction arctan (& redé-
montrer par le lecteur!) : pour tous a,b € R,

b
arctan( ot ) siab <1,

1—ab
arctan(a) + arctan(b) = { = % siab=1,

arctan atb +7  siab>1.
1—ab

mais c¢’était tout de méme moins évident !



2. % CVSsur R,.
Soit z € R. Etudions la nature de (f,())nen-

On a:
=0—>1 siz=0
nx n—-4oo
1+ n2g2? ~ =z — L _ .0 &z>0
n—-+o0o 1+n?z? nr n—-+oo

Par suite, (f,,(z))nen- converge.
Ceci étant vrai pour tout € Ry, la suite (f,)nen+ converge simplement sur R, et
ce, vers la fonction nulle.

* CVU sur R.
Soit n € N. Pour tout € R, on a :

ne
|fn(z) — f(2)| = oL
On étudie la fonction g, : ¢ — 1775525 sur Ry. Celle-ci est dérivable sur R, et on a
) = 1 — n22?
In\T) = (1+ n2z2)2’
1
x 0 — 1
n
gn(x) 0 + 0 -
gn(%)
0 0
Par suite, on a :
I = Sl = gal) = T 1 _ %0
n oo_gnn —1+n2(%)2_2n_>+00 2

Donc f,, — f est bornée sur Ry et || f,, — flloo = O.

Par suite, la suite (f,)nen ne converge pas uniformément sur Ry .

Remarque : on aurait également pu remarquer que (fr,—f)(z) = g(nx) avec g : t —
pour calculer sa norme infinie.

_t_
1+2

* Soit a > 0. CVU sur [a, +00].
Soit n € N. Pour tout z € R, on a :

nx
14 n2a2°

|fn(z) = f(2)]

La méme étude de fonction mais cette fois-ci sur [a, +00[ nous donne :

I fI ={g”(5):5 i<

SEERSNE

gn(a) = 1753z sin>



donc, pour tout entier n > é, on a :

na

I1fn = Flloo = 0

14+ n2a2 n—o+oo

D’ow’ f, — f est bornée sur [a, +oo[ et || frn — f]loo T 0.
n—r+00
Par suite, la suite (f,,)nen converge uniformément sur [a, +o0o[ vers la fonction nulle.

3. Pour n € N*| f,, : & — n®z™(1 — z) sur [0,1] ou o € R.

n,—x

4. Pourn €N, f, 1z +—

sur R .
n!

1= siz<n

. sur R .
0 sinon

5. PourneI\Lfn:xH{

3. Convergence simple des séries de fonctions

Exercice 10.

Pour n > 1 et 2 € R, on pose u, (x) = nx2e V",

1. Démontrer que la série ) u, converge simplement sur R..

1. Soit & > 0 fixé. Alors n?u,(x) = z2e~oVnt3nn tend vers 0. Par comparaison a une série
de Riemann convergente, la série ) u,(x) est convergente.

Exercice 11.
Soit uy,(z) = (=1)"In (1 + ﬁ) défini pour x > 0 et n > 1.

1. Montrer que la série > -, u, converge simplement sur R.

1. On va appliquer le critére des séries alternées. Il est clair que |u,(z)| tend vers 0, reste a
voir que, pour > 0, on a |up+1(z)| < |u,(x)[. Mais,

T T

(n+1)(1+x) = n(l+z)’

et on conclut par croissance de la fonction logarithme.



Exercice 12.

Pour z € T =1[0,1], a € R et n > 1, on pose u,(z) = n*z™(1 — x).

1. Etudier la convergence simple sur I de la série de terme général u,,.

1. Pour z €]0, 1], u,(z) > 0 et
U x
Unt1(2) — x €]0,1].
un ()
Par le critére de d’Alembert, la série de terme général u, (x) est convergente. Si « = 1, alors
un(z) = 0 et la convergence est triviale. De plus, on a clairement S(1) = 0. La convergence
dans le cas x = 0 est elle aussi triviale.

Exercice 13.
Pour z > 0, on pose un () = 555

1. Montrer que la série Zzool Uy, converge simplement sur R .

1. Il est tres facile de prouver la convergence simple sur R . Pour = 0, on a en effet u,,(0) = 0,
qui est bien le terme général d’une série convergente. Pour & > 0, on a 1, (%) ~p oo 73,
qui est aussi le terme général d’une série convergente.

Exercice 14.

re~ T

Inn

On consideére la série de fonctions ) -, up, avec u,(x) =

1. Démontrer que ), -, u, converge simplement sur R.

1. Pour z = 0, la série converge car u,(0) = 0. Pour = > 0 fixé, on a

w(@)=o(75).

et donc la série ), u, (x) converge.

Exercice 15.

re~ T

Inn

On considere la série de fonctions ) -, uy, avec u,(x) =

1. Démontrer que ), -, u, converge simplement sur R .

10



1. Pour z = 0, la série converge car u,(0) = 0. Pour z > 0 fixé, on a

wn(@) =0 ().

et donc la série ) u,(x) converge.

Exercice 16.

Soit ¢ : [0, +0o[— R une fonction continue et bornée telle que g(0) = 0. On considére la suite de
fonctions définie sur [0, +oo[ par f,,(z) = g(x)e .

1.

1. (a) Pour 0, f,,(0) = 0 et la suite converge. Pour z > 0, la suite (g(z)e~"*) tend vers 0. La
suite de fonctions (f,,) converge donc simplement vers 0.

Exercice 17.

Soit f : R — R une fonction continue, et soit a < b deux réels. Pour x € [a, b], on pose

n

fn(x):gif<x+;).

1. Etudier la convergence simple de la suite (f,,) sur [a, b].

1. On reconnait dans f,(z) une somme de Riemann pour f sur Uintervalle [z, z + 1], avec pas
de 1/n. Puisque f est continue, (f,(x)) converge vers f;ﬂ f(t)dt pour tout = € [a,b] (et
en fait, pour tout = € R).

11
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