Corrigé de la feuille d’exercices n°17

Mathématiques spéciales

1. Exercices basiques
a. Régularité des séries entiéres et développements en série entieres

Exercice 1.
Développer en série entiére au voisinage de 0 les fonctions suivantes. On précisera le rayon de

convergence de la série entiere obtenue.
1.In(1 + 22?) 2. avec a # 0
3.In(a + x) avec a > 0 4.16
—x
5.In(1 + x — 22?) 6.(4 + 22)7%/2

1. 11 suffit de remplacer ¢ par 222 dans le développement en série entieére de In(1 +¢). On a
+oo (_1)n+12nx2n

donc
1 1+22_—E
n( z) -

n=1
1

La série converge si |222| < 1. Son rayon de convergence est donc 7
2. Il suffit de factoriser par a au dénominateur et d’utiliser le développement en série entiere

1 1
= — X

de 1% Il vient
u
a—z a
Pour |z/a| <1 <= |z| < |a|, on obtient
—+oo +oo
1 1 z" z"
R EL) MR o
n=0 n=0

Le rayon de convergence de la série obtenue est |al.

In(a) + In(1 + z/a).

3. On factorise par a :
In(z + a) = In (a(1 4 z/a))

Pour |z/a| < 1, soit |z| < a, on en déduit
+o0o
_1 n+1,.n
In(z + a) = In(a) + Z (T)LTJ:'
n=1

Le rayon de convergence de la série entiére obtenue est a.



4. On réalise le produit de Cauchy des deux séries :

e :Z—'et 1 = E x.
n=0 - -r n=0

La deuxiéme série ayant pour rayon de convergence 1, on en déduit que pour |z| < 1, on a
+oo n
e’ n 1
= E a,z" avec a, = E —.
1—=z k!
n=0 k=0

La série converge pour |z| < 1 (régle du produit de Cauchy), et comme a,, > 1, le rayon
de convergence de la série obtenue est exactement égal & 1 puisque, pour |z| > 1, la série
>, anx™ ne peut pas converger puisque son terme général ne tend pas vers zéro.

5. Ona 1+xz —22? = (1 —2)(1+ 2x) donc la fonction est définie sur I =] —1/2, 1], et sur cet
intervalle, elle s’écrit

In(1+ 2 —22%) = In(1 — ) + In(1 + 2z).

En utilisant le développement en série entiére de In(1 4 u), on obtient

+oo  n
%
m(l-z)=-Y =
n(l —z) 27
(valable pour |z| < 1)
S (22)"
In(1 +22) = —1)nt
n1420) = Sy

(valable pour |z| < 1/2). En effectuant la somme, on en déduit que

oo

L

—1)»=127 —1
1n(1+1’—2:c2) = Lz"
n

Il
—

n

La série obtenue est de rayon de convergence 1/2.

6. On factorise par 4 pour se ramener & (1 +¢)*. On a donc

" 22\ 32
44232 = (141 .
(44 2%) 3 + 1

La fonction u + (14 u)~3/2 est développable en série entiere sur | — 1,1[ et

35.7.....2n+1)

246....2n -

Vuel - L1, 1+uw) 32 =1+ (-1)"

n>1

Il en résulte que pour tout z tel que % €]—1,1[, on a

22\ %2 35.7.....(2n+1) 22
1+ ~1 —1)" T
< * 4) +nz>:1( ' Si6..m w

La série entiére obtenue a pour rayon de convergence | — 2, 2].



Exercice 2.

Déterminer le développement en série entiere de x — }J_F—T

Notons f la fonction considérée. On pourrait écrire f(x) = (1 4+ x)/2(1 — x)~1/2 et réaliser le
produit de Cauchy de ces deux développements. Il y a plus astucieux et beaucoup plus simple si
on pense & écrire (attention aux exposants!)

f@)= 1 +2)(1 - a®) 2
En écrivant le développement de (1 + u)® avec u = —22 et a = —1/2, il vient

+oo

(A=27= 2 g

n=0

On conclut que

+oo
fla) = Z 22(3(7;)!!)2 (@™ +2™*1) .
n=0

On vérifie que le rayon de convergence de cette série entiere vaut 1.

Exercice 3.

Développer en série entiére la fonction f définie par f(x) = % et préciser le rayon de

convergence de la série obtenue.

On décompose f en éléments simples. Puisque le degré du numérateur est inférieur a celui du
dénominateur, on sait qu’il existe a, b, c € R tels que

a b c
A e A e R T

Si on multiplie les deux membres par 2z — 1 et qu’on fait = 1/2, on trouve ¢ = % =-—1.

De méme, multipliant par (z — 2)2, on trouve b = 1. Pour trouver a, on peut procéder par
identification et on obtient a = 1. On développe en série entiére chaque terme :

— Pour x # 2,
1 1 1 1

= == ——
Tz —2 2—x 2 1-—=z/2

Dong, pour |z|/2 < 1, on a

n

1 1 R X
_ & o . n
x_zi QXZQ'”*Z 2n+1x'
n=0 n=0




— Le troisiéme terme se traite de la méme fagon. Pour |z| < 1/2, on a

~1 1 =
= = 2” n.
2w —1 1—2z nz:% .

— Pour le deuxiéme terme, il suffit de remarquer que (m_% est la dérivée de x;_lz Ayant déja

obtenu le développement en série entiére de cette fraction rationnelle, il suffit de le dériver
terme a terme. On obtient donc :

1 _+OO n n71_+wn+1n
(x_2)2_22n+1x =2 ontz T
n=1 n=0

On obtient donc que, pour tout = €] — 1/2,1/2[; on a

+oo
=l n+1 n\ n
f(x)_z<2n+1 + on+2 +2 >1’ !

n=0

La série entiére obtenue est de rayon de convergence 1/2.

Exercice 4.

Soit f lapplication définie sur | — 1, 1] par f(¢) = cos(carcsint), o € R.
1. Former une équation différentielle linéaire du second ordre vérifiée par f.

2. Chercher les solutions de 1’équation différentielle obtenue qui sont développables en série
entiere et vérifient y(0) =1 et y’(0) = 0.

3. En déduire que f est développable en série entiére sur |—1, 1], et donner son développement.

1. On dérive deux fois f :

f(t) = cos(aarcsint)
"(t) = ——sin(aarcsint
P = <= sin(aarsing
'@ = — cos(aarcsin t) ot sin(carcsin t)
1—¢2 VI —12(1 - #2) '

On combine d’abord f et f” pour éliminer les termes en cos(«arcsint) puis on ajoute les
termes en f’ nécessaires pour éliminer les termes en sin(aarcsint). Au final, on trouve que
f est solution de I’équation différentielle suivante :

(1—-t*)y" —ty' +a’y=0.

2. On suppose qu'il existe une solution développable en série entiere y(t) = > -, a,t™ sur
] = R, B[ vérifiant y(0) = 1 et y'(0) = 0. 3’ est somme de >_, - o(n + 1)an11t" et y” est
somme de _, - (n+1)(n+2)an 2t La fonction t +— (1—#*)y” —ty’ +a’y est donc somme



de la série entiere

Z (n+1)(n+2)ants + (—n(n — 1) — n+ a®)a,)t".
n>0

Ceci doit étre identiquement nul sur | — R, R[. Par unicité du développement en série entiére,
on obtient, pour tout n € N,

(n+1)(n+2)ans2 = (n® — a®)ay,.

Puisque ag =1 (car y(0) = 1) et a; = 3/(0) = 0, on en déduit que ag,41 = 0 pour tout p et

que
a2p_(<2;))!(; (%—p+1) (%—p+2)...(%+p—1).

Réciproquement, la série entiere

s o) G o)) (Gro-1)at

p=0

a un rayon de convergence égal & 1 (on le vérifie facilement par la régle de d’Alembert) et
est, en remontant les calculs, solution de ’équation différentielle avec les conditions initiales
voulues.

3. L’équation différentielle (1 —t2)y” —ty’ 4+ a?y = 0 est une équation différentielle linéaire du
second ordre, et 1 — 2 # 0 sur ] — 1, 1[. Il existe donc une unique solution & cette équation
définie sur | — 1,1[ et vérifiant y(0) = 1 et y'(0) = 0. f et la série entiére trouvée a la
question précédente conviennent. On en déduit qu’elles sont égales. Autrement dit, f est
développable en série entiere, et

f<z>_z<<2;*§j’§ (& -p+1) (S-pr2)... (Sop-1)a™,

Exercice 5.

Soit o € R. On note fo(z) = (1 — ).

1. Préciser le domaine de définition D de f,. Justifier que f, est de classe C! sur D et donner
une équation différentielle du premier ordre vérifié par f, sur D.

2. On définit la famille de polynémes (Ly) par Lo =1 et Ly(X)=X(X +1)--- (X +k—1)
pour tout k € N*. Démontrer que pour tout z €] — 1, 1],

+o0o Zn
fala) = 3 Lnla) .
n=0
3. En déduire que, pour tous réels « et 3, on a

Lot +8) =3 (7)) el s

k=0



1. Remarquons d’abord que si « est un entier négatif ou nul, alors f, est un polynéme et son
domaine de définition est R. Sinon f, est défini par f,(z) = exp(—aIn(l —z)) qui est bien
défini si 1 —z > 0, done si z < 1. Dans ce cas, D =] — 00, 1[. Par composition de fonction
de classe C', f, est de classe C' sur son domaine de définition et, pour tout = € D, on a

fa@) = 7 exp(~aln(l — 2)) = == fa(a).

(0%

1—x
Ainsi, f, vérifie I’équation différentielle suivante sur D :
(1 —2)y () — ay(z) =0
(cette équation est également vérifiée en x = 1 si 1 € D, c¢’est-a-dire si —a € N).
2. Posons I =] — 1, 1[. L’équation différentielle précédente se réécrit, sur I,

(67

/

) = z) =0.
(@)~ 2 y()
D’apres le théoréme de Cauchy linéaire, elle admet une unique solution définie sur I vérifiant
y(0) = 1 : la fonction f,. Considérons ensuite la série entiere S(z) = 129 L”T(,a)x" Alors,

puisque

L1 (@)
(n-tkll)! _n + O nostoo
Ln('oc) - n4+1 9

la regle de d’Alembert nous dit que cette série entiére est de rayon de convergence 1. En
particulier, elle est de classe C! sur I, et, pour tout = € I,

’ = L’ﬂ a n—1
S'(x) = Z (n(l))'m .

Ainsi,

RO +oo
(-5 =Y s 3 L)

— (n—1)! — (n—1)!
+00Ln1a n = Ly(a)
-y Ty 5 e
n=0 n=1

X[ Lot1(@)  Ln(a) \ .
-+ 3 (P - )

Or, L1 (a) = a = alg(a) et
Lny1(@) Ln(a) _ Lpti(a) —nln(a)

n! (n—1)! n!
:a(a+1)~~-(a+n)—noz(oz—&—l)-u(a—i-n—l)
n!
_ ala+1)---(a+n—-1)(a+n—n)
n!
= oL, (c).

Ainsi, on a prouvé que, pour tout x €] — 1,1,

(1 —2)5"(z) = aS(x).



Puisque S(0) = Lo(«) = 1, l'unicité dans le théoréeme de Cauchy nous dit que S = f, sur
] — 1,1[, ce qui est le résultat demandé.

3. Rappelons I’énoncé du théoreme concernant le produit de Cauchy de deux séries entieres :
si A(z) = >, spana™ et B(x) = > -, bnxy, sont deux séries entieres, alors leur produit

de Cauchy est la série enticre C(z) = 32,25 (3 1_, axbn_r) 2" De plus, si A et B ont
pour rayon de convergence respectifs R4 et Rp, alors le rayon de convergence de C' vérifie
Rc > min(R4, Rp) et pour tout x € R avec |z| < min(R4, Rp), on a

Appliquons ce résultat avec A(x) = fo(z) et B(x) = fa(z), dont la série produit est
io (i Lk@ﬂnk(ﬁ)) o
= \= kl(n —k)!

Tenant compte du fait que f, - fg = fatp et que

bt mi
El(n—k)!  \k/)n!
on obtient pour tout = €] — 1,1],

+OoLnoz n =X (I~ /n\ L o)L, — "
5> Inlat ), =Z<Z(k) (@)L kw))x,

n=0 : n=0 \k=0
Par unicité du développement en série entiére, on obtient finalement que pour tout n > 0,

n

Lua+8) =3 () @) Ln-s(9)

k=0
Exercice 6.
Soit a > 0 et f : [—a,a] — R une fonction de classe C* telle qu'’il existe C, A > 0 vérifiant, pour

tout n € N,
[£™]|oe < C-A™ - nl.

Démontrer que f est développable en série entiere en 0.

Prenons = € [—a, a]. D’aprés I'inégalité de Taylor-Lagrange & ’ordre n entre 0 et x, on a

- f(k) (0) k |x|n+1||fn+1||oo n+1
< — 0 TEK A .

Soit r = min(a, 1/A). Alors si |z| < r, on a |zA| < 1 et donc |z A|"T! — 0. On en déduit que la
série de Taylor de f converge vers f sur l'intervalle | — r, [, et donc f est développable en série
entiere sur cet intervalle.



Exercice 7.

Montrer que les fonctions suivantes sont de classe C'™ :

1.
2.
3.

f(z) =sin(z)/x si x # 0, f(0) = 1.
g(z) = ch(y/z) siz > 0 et g(x) = cos(v/—x) si z < 0.
h(z) = =% Lsiz €] — 7, 0[U]0, [, h(0) = 0.

sinx x

. Pour z # 0, on a, d’apres le développement en série entiere de sin,

+o0 1.277,
flz) = 7;)(*1) @ns )l

Cette égalité est encore vraie en 0, puisque les deux membres sont alors égaux a 1. Ainsi,
f coincide sur R avec une série entiére de rayon de convergence +oo. f est donc de classe
C*.

. Pour x >0, on a

Pour z < 0,0n a:

+oo on +oo _1)ngn +o0o o
gla) = (- DT g CU_5m

| | i
= (2n) = (2n)! = (2n)!
Ainsi, g coincide sur R avec la série entiere Z:{z% (Qx:)! : elle est donc de classe C'™°.
Pour z # 0, on a '
x —sinx
h(z) = ————.
rsinz

On développe en série entiere le numérateur et le dénominateur, en mettant en facteur le
premier terme. On trouve

+ 2p—1
22 X S ()" G

h(z) = = z

2 Y2V
Posant u() = 325 (—1)"*! & et () = 3420 (—1)P iy, on voit 0
T ep=l (2p+1)! — Zup=0 2pr)l’ que pour z # 0,

h(z) = % Or, u et v sont de classe C™ (ce sont des sommes de série entiére), v ne s’annule
pas en 0, et de plus «(0)/v(0) = 0 = h(0). Ainsi, h définit bien une fonction de classe C*°
au voisinage de 0 comme quotient de deux fonctions de classe C*° dont le dénominateur ne
s’annule pas en 0.

Exercice 8.

On consideére la série entiere f(z) =

1.

— ytoe (D) ong
n=1 n(2n+1) .

Quel est son rayon de convergence, que l'on notera R? Y-a-t-il convergence aux bornes de



I'intervalle de définition ?

. Sur quel intervalle la fonction f est-elle a priori continue ? Démontrer qu’elle est en réalité
continue sur [—R, R].

. Exprimer, au moyen des fonctions usuelles, la somme de la série dérivée sur | — R, R[. En
déduire une expression de f sur | — R, R].

4oo (=Dt
. Calculer » "7 CTESIE
_ (=D™ opt luntil _  n(2nt1)z? 9 el 51D N .
. Posons u,, = eTES Y ntl Alors e = D |z|%. Ainsi, d’apres la régle
de d’Alembert, la série entiere est convergente pour |z| < 1 et divergente pour |z| > 1.
_ - (=n"+
Son rayon de convergence est donc 1. De plus, pour z = 1, la série Zn21 FerEsyl est
(absolument) convergente (on peut aussi prouver qu’elle converge d’aprés le critére des
séries alternées). De méme, pour = —1, la série Zn21 W%H) est convergente. f est donc

définie sur [—1,1].

. La théorie des séries entieres nous dit que f est continue sur son intervalle ouvert de
convergence, c¢’est-a-dire sur | — 1, 1[. Pour prouver la continuité sur [—1, 1], on va prouver
qu’il y a convergence normale sur tout l'intervalle [—1,1]. En effet, pour tout = € [—1,1],
on a

(—1)ntign 1

n(2n+1) | ~ n(2n+1)

et le membre de droite de 'inégalité est le terme général d’une série numérique convergente

(insistons sur le fait qu'’il ne dépend pas de z). La série est donc normalement convergente
_qyntign

sur [—1,1]. Comme chaque fonction z — ¢ est continue sur [—1,1], on en déduit

n(2n+1)
que f est continue sur [—1,1].

. La série dérivée est, pour |z| < 1,
+
= (=)™,

fl(z) = — " =1In(1 + z?).

En effet, pour # €] — 1,1[, on a 0 < 22 < 1 et on est bien dans le domaine de validité
du développement en série entiere de In(1 + w). Puisque f(0) = 0, on en déduit f(x) =

fox In(1 + t2)dt. On calcule cette intégrale en effectuant une intégration par parties :

f(z)

x
/ 1 x In(1 + t?)dt
0

o\ T 22

TP+1-1
_ 2

v 1
_ 2
= xln(1+x)—2/0 <1_t2+1)dt

x

= zln(l +2?) — 2[t — arctan(t)];
= gzln(1 +2?) — 2z + 2arctan .




4. Légalité f(z) = xIn(l + 2?) — 22 + 2arctanx n’est valable que pour z €] — 1,1[. Mais
le membre de droite comme celui de gauche sont continus en 1. Par continuité, 1’égalité
précédente reste vraie sur [0, 1] tout entier. On conclut que

too (_1)n+1

Zm:f(l)zln@)—%kf.

2
n=1
Exercice 9.
On considére la série entiere f(z) = 31> 75(;1_):) z".

1. Déterminer le domaine de définition de f.

2. Démontrer que f est continue sur son domaine de définition.

3. Exprimer f/, puis f, & l’aide de fonctions usuelles sur l'intervalle | — 1, 1].
4. Déduire des questions précédentes la valeur de > -, n((_n 13;)

1. Le rayon de convergence de la série entiere est 1. De plus, puisque
=" ¢
n(n —1)

= n2
on a aussi convergence en 1 et —1. L’intervalle de convergence est donc [—1,1].

2. Les théoréemes usuels concernant les séries entieres ne donnent la continuité que sur ’inter-
valle ouvert | — 1, 1[. Si on veut obtenir la continuité sur intervalle fermé, il faut aller plus
loin ! Pour cela, on va montrer la convergence normale de la série sur Uintervalle [—1, 1]. En
effet, pour tout z € [—1,1] et tout n > 2, on a

n(n —1)

C

777,2

et cette derniére série est convergente. Puisque chaque fonction z — n((n 1_)7;) 2™ est continue
sur [—1,1], on en déduit la continuité de f sur [—1,1].

3. f est dérivable sur | — 1,1[ et on a
S (D"
(@)=Y 2" =In(l +a).
Fw)=3 e =)

Par intégration, pour tout « €] — 1,1[, on a
fl@)=014+2)In(l+2)—z+C.

La constante C' se calcule en remarquant que f(0) =0=C.
4. L’égalité précédente est, a priori, vraie sur |—1, 1], mais puisque f et © — (1+2) In(1+2z)—=z
sont continues en 1, elle est aussi vraie en 1. On en déduit

> n(_i = f(1) =2In(2) — 1.

] (n—1)

10



2. Exercices d’entrainement

a. Régularité des séries entiéres et développements en série entiéres

Exercice 10.

Soit f lapplication définie sur | — 1, 1] par f(z) = exp(Aarcsinz), A € R.

1.
2.

Former une équation différentielle linéaire du second ordre vérifiée par f.

Chercher les solutions de 1’équation différentielle obtenue qui sont développables en série
entiere et vérifient y(0) =1 et y’(0) = A.

. En déduire que f est développable en série entiere sur | — 1, 1].

. On dérive deux fois f :

f@) = exp(Marcsinz)
A
f'(r) = ——=exp(\arcsinz)
V1— a2
fx) = e exp(\arcsin) + i exp(\ arcsin x)
T Qg2 P 1—q2 P '

On trouve que f est solution de I’équation différentielle suivante :

(1—2*)y" —zy — Ny=0.

. On suppose qu'il existe une solution développable en série entiere y(t) = > ., a,a™ sur

| = R, R[ vérifiant y(0) = 1 et y'(0) = . ¢ est somme de > -, (n + 1)ap412™ et y” est
somme de Y. - o(n+ 1)(n + 2)a,422™. La fonction ¢ — (1 — 22)y” — 2y’ — A?y est donc
somme de la série entiére

Z (n+1)(n+ Dany2 + (—n(n—1) — n— A)a, )™
n>0

Ceci doit étre identiquement nul sur | — R, R[. Par unicité du développement en série entiére,
on obtient, pour tout n € N,

_ n? + X2
M )+ 2) ™™
De plus, ap = 1 (car y(0) = 1) et a3 = 3’(0) = A. On trouve ainsi une unique suite (a,,)
solution. On peut calculer expliciter a,,, en distinguant les termes pairs et les termes impairs
(le calcul est laissé au lecteur). Réciproquement, la suite (a,) précédente définit une série
entiére de rayon de convergence 1 d’apres le critére de d’Alembert (puisque ap42/a, — 1).
Cette série entiere est, en remontant les calculs, solution de 1’équation différentielle avec les
conditions initiales voulues.

. L’équation différentielle (1 —22)y” — 2y’ — A2y = 0 est une équation différentielle linéaire du

second ordre, et 1 — 22 # 0 sur | — 1, 1[. Il existe donc une unique solution & cette équation
définie sur | — 1,1[ et vérifiant y(0) = 1 et y'(0) = . f et la série entiére trouvée a la
question précédente conviennent. On en déduit qu’elles sont égales. Autrement dit, f est
développable en série entiere, et f(z) =" ., anz™.

11



Exercice 11.

Soit f la fonction définie sur R par f(z) = e* /2 Iy e=t/24t.
1. Etudier la parité de f.
2. Justifier que f est développable en série entiere.

3. En formant une équation différentielle vérifiée par f, déterminer ce développement.

1. La fonction z — e* /2 est paire. La fonction z — foz e /24t est impaire (faire le change-
ment de variables u = —¢ dans 'intégrale). Donc f est impaire.

2. La fonction 7+ e® est développable en série entiere, de rayon de convergence +oco. Toute
primitive d’une fonction développable en série entiere de rayon de convergence infini vérifie
la méme propriété. Cest en particulier le cas de = — [ e~t°/2dt. Par produit, f est
développable en série entiére de rayon de convergence +oo.

3. Par dérivation d’un produit, on a

x
f(z) = a:exz/Q/ e 2t +1 = xf(x)+ 1.

0
f est donc solution de I'équation différentielle y' = zy + 1. Ecrivons ensuite f (@) =
D a,x?"*! le développement en série entiere de f (on sait qu’il a cette forme puisque
f est impaire). Introduisant ce développement en série entiére dans I’équation différentielle
(et utilisant 'unicité d’un développement en série entiére), on trouve que, pour tout n > 1,

An—1

(2n+1)

ap =

et ap = 1. On en déduit finalement que

noy
f@) =% rﬁ e

n>0

Remarquons qu’on aurait aussi pu obtenir le développement en série entiere de f en utilisant
le méme argument que celui utilisé pour son existence, c’est-a-dire en utilisant le produit de
Cauchy des développements en série entiere de e /2 et z Iy e~t/2dt. Procédant ainsi, on
ne trouverait pas facilement la méme réponse, mais plutét un terme devant 22"+ qui s’écrit
comme une somme. Par identification, on en déduirait une jolie identité combinatoire.

Exercice 12.

Soit f une fonction de classe C'°° sur un intervalle ouvert I contenant 0 telle que f, et toutes ses
dérivées, sont positives sur I. Soit @ > 0 tel que [—«, a] C I. On veut prouver dans cet exercice
que f est somme de sa série de Taylor sur 'intervalle | — «, af.

1. Justifier que, pour tout x € [—a, o],

n 1 _\n
@) = 104 af ) -+ T 0) ot [ 0 g
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= @+ [ O () (),

On pose alors, pour tout z € [—a, al, R,(x)
< Jz/a|" " Ry ().

)
2. Démontrer que, si |z] < «, alors |R,,(z)|

3. Conclure.

1. 11 s’agit simplement de la formule de Taylor avec reste intégral, aprés changement de va-
riables.

2. On sait que f"*! est croissante sur I puisque f(**+2) > 0. On en déduit que, pour tout
u € [0,1], f+ (zu) < fOHD (qu). Par intégration, on en déduit immédiatement le résultat
demandé.

3. Il s’agit de démontrer que R, (x) tend vers 0. D’aprés I'inégalité précédente, il suffit de
démontrer que la suite (R, («)) est bornée. Mais, en reprenant le résultat de la premiére
question pour x = «, et en observant que tous les termes apparaissant dans la somme sont
positifs, on trouve que R, (a) < f(a). Et donc (R, (x)) tend bien vers 0.

3. Exercices d’approfondissement

a. Régularité des séries entiéres et développements en série entieres

Exercice 13.

1. Pour k£ € N, démontrer que f0+°o 2h+le—t* gt — %

2. Déterminer le développement en série entiére en 0 de
+oo R
f:x n—>/ e " sin(tz)dt
0

(a) en procédant & une intégration terme & terme;

(b) en déterminant une équation différentielle dont le fonction est solution.

1. La fonction t — t26+1e=t" est continue sur [0, +00] et, au voisinage de +00, on a t2FHle=t" =
o(t~2). Ceci justifie la convergence de I, = f0+oo 2k+1e=t" gt De plus, en réalisant une

intégration par parties (on intégre te=t" et on dérive t2%), on a pour k > 1

=1 okt 2] +0021c1 2
I, = [t + et} +k/ Rt = kI,
2 0 0

+o0 too
1 1
Iy :/ te ™ dt = [etz] .
0 2" |, 2

Comme de plus

on en déduit que I = %’

13



2.

(a)

Puisque la fonction sinus est développable en série entiere de rayon de convergence
égal & 400, on sait que pour tout x € R et tout ¢t € [0, +o0[, on a

sin(xt) = +ZOO ﬂ(tm)mﬁl,
pors (2k+1)!

c’est-a-dire que

+oo t00 1\k .
f(z) = /0 ;%(t@%“et dt.

On va ensuite permuter la série et I'intégrale en vérifiant les hypotheses du théoreme
d’intégration terme a terme. En effet, on a

Tl (—1)k e
A ‘ (2(k +)1)' (tl,)2k:+le

_ k! 2k+1
Or, posons uj, = mm 1 On a

dt< |x|2k+1 k!

_ 2k+1
S @Dt T 2

wer1 _ (k4 1)zf? 0.
we  (2k+3)(2k+2)

Par le critere de d’Alembert, la série ), uj converge, il en est donc de méme de la

k
série Y, f0+oo ‘(ég}r)l)l (tz)2*+1e=t"| dt. Par le théoréme d’intégration terme & terme,

on peut permuter la série et 'intégration, et on obtient donc

+oo  too k +o00 2
_ (—1) 2k+1,—t% 5, _ (_1) k! 2k+1
/(@) ;o/o hr ) e = kZ:OQ(Zk;—&—l)!x '

On va appliquer le théoreme de dérivation d’une intégrale a parametres. Pour cela,
posons g(z,t) = et sin(tz) qui est de classe C* sur R x [0, +oo[. De plus, on a

%(m, t) = tet* cos(tx)
x

ce qui implique que, pour tout x € R et tout ¢ € [0, +o0[, on a

99
or

(m,t)’ <te '

Cette derniére fonction (qui ne dépend plus de z) est intégrable sur [0, +o0o[. Ainsi, f
est dérivable et

f(z) = /0+oo te™ cos(tz)dt.

Pour former une équation différentielle vérifiée par f, on va intégrer par parties, en
intégrant te~*" et en dérivant cos(tz). Il vient

-1

) +oo +oo 2
fl(x) = [2e_t cos(tx)}o - %/0 e ! sin(tz)dt = % - %f(x)

Ainsi, f est solution de I’équation différentielle 2y’ + zy = 1. Il s’agit d’une équation
différentielle linéaire du premier ordre ; d’apres le théoréeme de Cauchy, f est la solution

14



de cette équation différentielle vérifiant y(0) = 0. Cherchons maintenant une solution
y(x) = 3,5, arz® de cette équation différentielle vérifiant y(0) = 0. On a

+ oo +oo
2 Z kakxk_l + Z akask'*'1 =1
k=1 k=0

soit
—+o0

2a1 + Z ((k +2)apye +ap)zF =1,
k=0

Par unicité du développement en série entiere, on en déduit que a; = % puis que agyo =
;‘:’5 Apres un calcul standard, on trouve (évidemment!) le méme développement en
série entiere qu’a la question précédente.

Exercice 14.

Soit f(x) = Z:i% e~ men’iT,

1.

2.
3.

Justifier que f est une fonction de classe C* sur R.
M 1% 0)] k,—k
ontrer que, pour chaque k, *—7= > k"e™".

En déduire que f n’est pas développable en série entiere en 0.

. Posons u,(x) = e~ e Alors u, est O sur R et pour tout k > 0, pour tout z € R et

tout n > 0, on a
-
uglk) (1,) _ (inQ)kefnen ir
Puisque n?*e¢=" = O(n~2), il existe une constante M > 0 telle que pour tout = € R,

[ul® ()] < Mn~2,

La série (numérique) qui apparait a droite est convergente, on en déduit que la série des
dérivées k-iemes ) - ne converge normalement (donc uniformément) sur R pour tout

k> 0. Ainsi, f =" u, est de classe C*°.

. D’aprés le caleul précédent, on a [fF)(0)| = 33, o n?*e ™ > k?!e=k. Or, k* > k!, et donc

FR0) K k_—Fk

i > ﬁk e " >ke ",
Si la fonction était développable en série entiere en 0, il existerait un intervalle non-vide [
centré en 0 tel que, pour tout x € I, f serait somme de sa série de Taylor en 0. Autrement

dit, on aurait

_x SP(0)
fl@) =) ="
n>0
Mais pour x # 0, cette série ne converge pas car son terme général ne tend pas vers 0. En

effet,
F®(0)

A > k*(z/e)* = +o0

.’L‘k
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(on peut aussi vérifier la non-convergence par le critére de d’Alembert). Ainsi, f n’est pas
développable en série entiere en 0.

Exercice 15.

Soit f(z) =Y, >0 anz" une série entiere de rayon de convergence strictement positif. On suppose
de plus que ag # 0. Le but est de prouver que la fonction 1/f est développable en série entiere
au voisinage de zéro.

1. On suppose que 1/f =3 - b,2", avec rayon de convergence strictement positif. Quelle
relation de récurrence vérifie la suite (b,) ?

2. Soit (by,) la suite définie par la relation de récurrence précédente. Montrer qu’il existe une
constante C' > 0 telle que, pour tout n > 0, on a

bn| < o

lao|

3. En déduire que 1/f est développable en série entiere.

1. D’apres la formule du produit de Cauchy, on a

Z a2 Z b,z" | = Z G =1

n>0 n>0 n>0

avec ¢, = Y p_o arby_k. La suite (by,) vérifie donc la relation de récurrence

- L
{ - 2 ¢
b, = ey Zkzl agbn—k

2. Soit R > 0 tel que |a,| < R™ pour n > 1, et on pose C' > 0 suffisamment grand pour que

Rk
Z e < |ao]

k>1

7’ @ . . .
On va prouver par récurrence sur n que |b,| < =. C’est vrai au rang 0, et si c’est vrai

lao|”
jusqu’au rang n — 1, alors

3. Soit g(2) = >,5¢bnz". Alors, par la formule sur le produit de Cauchy de deux séries
enticres et par définition de (b,,), on a f(2)g(z) = 1 dans un voisinage de 0. Autrement dit,
g = 1/f dans un voisinage de 0. 1/f est donc développable en série entiére en 0.

16



Exercice 16.

Pour tous les entiers k et n tels que n > 1 et 0 < k < n, on note D, ;; le nombre de bijections
(ou permutations) s de 'ensemble {1,...,n} ayant k points fixes, c’est-a-dire telles que

k=card{i € {1,...,n}; s(i) =1}.

On pose Dy =1 et d,, = D, 9. dy, désigne le nombre de dérangements, c’est-a-dire de permu-
tations sans point fixe.

1.

Tt W N

[=p)

. En déduire que d,, = n! > _ ,)

. Soit p, la probabilité pour qu'une permutation prise au hasard soit un dérangement. Quelle

Dresser la liste de toutes les permutations de {1, 2,3} et en déduire la valeur de Ds g, D3 1,
D3 2 et D3 3.

. Montrer que n! =3} D
. Montrer que D, = (Z)ank,&

. Montrer que la série entiere ) -, ‘i—’}z” a un rayon de convergence supérieur ou égal a 1.

. On pose f(z) =3 e g™, Montrer que (expz)f(z) = 1 pour |z| < 1.

1k

est la limite de p,, quand n tend vers +oo ?

Puisque {1,2,3} a trois éléments, il existe exactement 6 bijections différentes de {1,2,3}
dans lui-méme :

— lidentité;
— les 3 transpositions (1 2), (1 3), (2 3).
— les 2 cycles (12 3) et (13 2).

L’identité a 3 points fixes, les transpositions en ont 1 et les cycles n’en ont pas. On en déduit
que
Dg’(] = 2, D371 = 3, D3’2 =0et D3,3 =1.

. Si on note Ay, ’ensemble des permutations de {1,...,n} ayant k point fixes, alors la famille

Ao, ..., A, forme une partition de 'ensemble des permutations de {1,...,n}. Ainsi, on a
bien n' Sh_ocard(Ag) =>7_o Dy k-
Pour chaque permutation ayant k points fixes, il y a

— (Z) choix possibles de ces k points fixes (choisir k éléments parmi n);

— ce choix effectué, la permutation agit comme une permutation sans point fixe sur les
n — k éléments restants. Il y a D,,_, o telles permutations.

Le nombre de permutations ayant k points fixes vaut donc (Z) Dy k0.

. Clairement, on a 0 < d,, < n!, soit % < |z|™. La série converge absolument si |z| < 1,

son rayon de convergence est au moins égal a 1.

. Puisque les séries entiéres définissant expx et f(z) ont un rayon de convergence supérieur

ou égal & 1, leur produit de Cauchy est absolument convergent pour |z| < 1. De plus, on a

n

@ 1
(expz)f Z bz avec by, Z (le_z)' X

k=0

17



Mais

" dy, 1 1 < (n 1 —
D T X R ml (k:)d"k =12 Dur=1.
k=0 k=0 k=0

On obtient
+oo 1
(epa)s@) =3 a" =
. De I'égalité (expz)f(z) = 1=, on tire
e—l’

On réalise le produit de Cauchy des deux séries entiéres obtenues a droite et on trouve

+oo n (_1)k
f(z) = Z cnx™ avec ¢, = Z x
n=0 :

k=0

k
Par identification, on obtient bien d,, =n!) ;_, (_kl!) .

k
. La probabilité recherchée est p,, = d,,/n! = EZ:O % Utilisant le développement en série

entiere de exp(—zx), on trouve que cette probabilité converge vers exp(—1) = 1/e.

Exercice 17.

On rappelle qu’une involution de {1,...,n} est une application s: {1,...,n} — {1,...,n} telle
que s o s(k) = k pour tout k € {1,...,n}. On note I,, le nombre d’involutions de {1,...,n} et
on convient que Ip = 1.

1.

Démontrer que, si n > 1, alors
In-i—l =1, +nl, 1.

. Démontrer que la série entiere S(z) = Y. ., 22" converge pour tout  dans ] — 1,1[. On

n!
note S sa somme.

. Justifier que, pour tout z €] — 1,1[, on a S’ (x) = (1 + x)S(z).

4. En déduire une expression de S(z), puis de I,,.

. Considérons s une involution de {1,...,n + 1}. Ou bien elle fixe n + 1. Dans ce cas, sa
restriction & {1,...,n} est une involution de cet ensemble, et il y a I,, telles involutions.
On bien elle envoie n + 1 sur un entier k& de {1,...,n}. Dans ce cas, s(k) =n+ 1 et s agit

comme une involution sur ’ensemble des n — 1 entiers restants. Il y a n choix pour ’entier
k et I,,_1 choix pour l'involution résultante. On en déduit que

InJrl =1I,+nl,_1.

. Une involution est nécessaire bijective. Donc I,, < n! ce qui prouve bien que le rayon de

convergence de la série associée a S est supérieur ou égal a 1.

18



3. On a 7 p ; 7
_ n_n n—1 n _ n —Nipn-1 p,

n>0 n>1

En utilisant le résultat de la premiere question, on obtient

1+2)8@) =1+ %x" ~ S'(a).

n>1

4. La résolution de I’équation différentielle donne

N

x 22

S(x) =e*TT =¢%z.

On développe alors chaque exponentielle en série entiere, et on réalise le produit de Cauchy
de ces deux séries entieres. Apres quelques calculs laborieux, on trouve

> (2p)! s (2p+1)!
Top = t Iop1 = .
2 = 2 5oy — B T 2 TG — R )
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