
Corrigé de la feuille d’exercices no17
Mathématiques spéciales

1. Exercices basiques

a. Régularité des séries entières et développements en série entières

Exercice 1.Exercice 1.

Développer en série entière au voisinage de 0 les fonctions suivantes. On précisera le rayon de
convergence de la série entière obtenue.

1. ln(1 + 2x2) 2. 1

a− x
avec a 6= 0

3. ln(a+ x) avec a > 0 4. ex

1− x
5. ln(1 + x− 2x2) 6.(4 + x2)−3/2

Correction.

1. Il suffit de remplacer t par 2x2 dans le développement en série entière de ln(1 + t). On a
donc

ln(1 + 2x2) =

+∞∑
n=1

(−1)n+12nx2n

n
.

La série converge si |2x2| < 1. Son rayon de convergence est donc 1√
2
.

2. Il suffit de factoriser par a au dénominateur et d’utiliser le développement en série entière
de 1

1−u . Il vient
1

a− x
=

1

a
× 1

1− x
a

.

Pour |x/a| < 1 ⇐⇒ |x| < |a|, on obtient

1

a− x
=

1

a
×

+∞∑
n=0

xn

an
=

+∞∑
n=0

xn

an+1
.

Le rayon de convergence de la série obtenue est |a|.
3. On factorise par a :

ln(x+ a) = ln
(
a(1 + x/a)

)
= ln(a) + ln(1 + x/a).

Pour |x/a| < 1, soit |x| < a, on en déduit

ln(x+ a) = ln(a) +
+∞∑
n=1

(−1)n+1xn

nan
.

Le rayon de convergence de la série entière obtenue est a.
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4. On réalise le produit de Cauchy des deux séries :

ex =

+∞∑
n=0

xn

n!
et 1

1− x
=

+∞∑
n=0

xn.

La deuxième série ayant pour rayon de convergence 1, on en déduit que pour |x| < 1, on a

ex

1− x
=

+∞∑
n=0

anx
n avec an =

n∑
k=0

1

k!
.

La série converge pour |x| < 1 (règle du produit de Cauchy), et comme an ≥ 1, le rayon
de convergence de la série obtenue est exactement égal à 1 puisque, pour |x| > 1, la série∑

n anx
n ne peut pas converger puisque son terme général ne tend pas vers zéro.

5. On a 1+ x− 2x2 = (1− x)(1+ 2x) donc la fonction est définie sur I =]− 1/2, 1[, et sur cet
intervalle, elle s’écrit

ln(1 + x− 2x2) = ln(1− x) + ln(1 + 2x).

En utilisant le développement en série entière de ln(1 + u), on obtient

ln(1− x) = −
+∞∑
n=1

xn

n

(valable pour |x| < 1)

ln(1 + 2x) =

+∞∑
n=1

(−1)n−1 (2x)
n

n

(valable pour |x| < 1/2). En effectuant la somme, on en déduit que

ln(1 + x− 2x2) =

+∞∑
n=1

(−1)n−12n − 1

n
xn.

La série obtenue est de rayon de convergence 1/2.
6. On factorise par 4 pour se ramener à (1 + t)α. On a donc

(4 + x2)−3/2 =
1

8

(
1 +

x2

4

)−3/2

.

La fonction u 7→ (1 + u)−3/2 est développable en série entière sur ]− 1, 1[ et

∀u ∈]− 1, 1[, (1 + u)−3/2 = 1 +
∑
n≥1

(−1)n
3.5.7. . . . .(2n+ 1)

2.4.6. . . . .2n
un.

Il en résulte que pour tout x tel que x2

4 ∈]− 1, 1[, on a(
1 +

x2

4

)−3/2

= 1 +
∑
n≥1

(−1)n
3.5.7. . . . .(2n+ 1)

2.4.6. . . . .2n

x2n

4n
.

La série entière obtenue a pour rayon de convergence ]− 2, 2[.
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Exercice 2.Exercice 2.

Déterminer le développement en série entière de x 7→
√

1+x
1−x .

Correction.

Notons f la fonction considérée. On pourrait écrire f(x) = (1 + x)1/2(1 − x)−1/2 et réaliser le
produit de Cauchy de ces deux développements. Il y a plus astucieux et beaucoup plus simple si
on pense à écrire (attention aux exposants !)

f(x) = (1 + x)(1− x2)−1/2.

En écrivant le développement de (1 + u)α avec u = −x2 et α = −1/2, il vient

(1− x2)−1/2 =

+∞∑
n=0

(2n)!

22n(n!)2
x2n.

On conclut que

f(x) =

+∞∑
n=0

(2n)!

22n(n!)2
(
x2n + x2n+1

)
.

On vérifie que le rayon de convergence de cette série entière vaut 1.

Exercice 3.Exercice 3.

Développer en série entière la fonction f définie par f(x) = x2+x−3
(x−2)2(2x−1) et préciser le rayon de

convergence de la série obtenue.

Correction.

On décompose f en éléments simples. Puisque le degré du numérateur est inférieur à celui du
dénominateur, on sait qu’il existe a, b, c ∈ R tels que

f(x) =
a

x− 2
+

b

(x− 2)2
+

c

2x− 1
.

Si on multiplie les deux membres par 2x−1 et qu’on fait x = 1/2, on trouve c = 1/4+1/2−3
9/4 = −1.

De même, multipliant par (x − 2)2, on trouve b = 1. Pour trouver a, on peut procéder par
identification et on obtient a = 1. On développe en série entière chaque terme :

— Pour x 6= 2,
1

x− 2
= − 1

2− x
= −1

2
× 1

1− x/2
.

Donc, pour |x|/2 < 1, on a

1

x− 2
= −1

2
×

+∞∑
n=0

xn

2n
=

+∞∑
n=0

− 1

2n+1
xn.
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— Le troisième terme se traite de la même façon. Pour |x| < 1/2, on a

−1

2x− 1
=

1

1− 2x
=

+∞∑
n=0

2nxn.

— Pour le deuxième terme, il suffit de remarquer que 1
(x−2)2 est la dérivée de −1

x−2 . Ayant déjà
obtenu le développement en série entière de cette fraction rationnelle, il suffit de le dériver
terme à terme. On obtient donc :

1

(x− 2)2
=

+∞∑
n=1

n

2n+1
xn−1 =

+∞∑
n=0

n+ 1

2n+2
xn.

On obtient donc que, pour tout x ∈]− 1/2, 1/2[, on a

f(x) =

+∞∑
n=0

(
−1

2n+1
+

n+ 1

2n+2
+ 2n

)
xn.

La série entière obtenue est de rayon de convergence 1/2.

Exercice 4.Exercice 4.

Soit f l’application définie sur ]− 1, 1[ par f(t) = cos(α arcsin t), α ∈ R.
1. Former une équation différentielle linéaire du second ordre vérifiée par f .
2. Chercher les solutions de l’équation différentielle obtenue qui sont développables en série

entière et vérifient y(0) = 1 et y′(0) = 0.
3. En déduire que f est développable en série entière sur ]−1, 1[, et donner son développement.

Correction.

1. On dérive deux fois f :

f(t) = cos(α arcsin t)

f ′(t) =
−α√
1− t2

sin(α arcsin t)

f ′′(t) =
−α2

1− t2
cos(α arcsin t)− αt√

1− t2(1− t2)
sin(α arcsin t).

On combine d’abord f et f ′′ pour éliminer les termes en cos(α arcsin t) puis on ajoute les
termes en f ′ nécessaires pour éliminer les termes en sin(α arcsin t). Au final, on trouve que
f est solution de l’équation différentielle suivante :

(1− t2)y′′ − ty′ + α2y = 0.

2. On suppose qu’il existe une solution développable en série entière y(t) =
∑

n≥0 ant
n sur

] − R,R[ vérifiant y(0) = 1 et y′(0) = 0. y′ est somme de
∑

n≥0(n + 1)an+1t
n et y′′ est

somme de
∑

n≥0(n+1)(n+2)an+2t
n. La fonction t 7→ (1−t2)y′′−ty′+α2y est donc somme
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de la série entière∑
n≥0

(
(n+ 1)(n+ 2)an+2 + (−n(n− 1)− n+ α2)an

)
tn.

Ceci doit être identiquement nul sur ]−R,R[. Par unicité du développement en série entière,
on obtient, pour tout n ∈ N,

(n+ 1)(n+ 2)an+2 = (n2 − α2)an.

Puisque a0 = 1 (car y(0) = 1) et a1 = y′(0) = 0, on en déduit que a2p+1 = 0 pour tout p et
que

a2p =
(−4)p

(2p)!

α

2

(α
2
− p+ 1

)(α
2
− p+ 2

)
. . .
(α
2
+ p− 1

)
.

Réciproquement, la série entière∑
p≥0

(−4)p

(2p)!

α

2

(α
2
− p+ 1

)(α
2
− p+ 2

)
. . .
(α
2
+ p− 1

)
x2p

a un rayon de convergence égal à 1 (on le vérifie facilement par la règle de d’Alembert) et
est, en remontant les calculs, solution de l’équation différentielle avec les conditions initiales
voulues.

3. L’équation différentielle (1− t2)y′′− ty′+α2y = 0 est une équation différentielle linéaire du
second ordre, et 1− t2 6= 0 sur ]− 1, 1[. Il existe donc une unique solution à cette équation
définie sur ] − 1, 1[ et vérifiant y(0) = 1 et y′(0) = 0. f et la série entière trouvée à la
question précédente conviennent. On en déduit qu’elles sont égales. Autrement dit, f est
développable en série entière, et

f(x) =
∑
p≥0

(−4)p

(2p)!

α

2

(α
2
− p+ 1

)(α
2
− p+ 2

)
. . .
(α
2
+ p− 1

)
x2p.

Exercice 5.Exercice 5.

Soit α ∈ R. On note fα(x) = (1− x)−α.

1. Préciser le domaine de définition D de fα. Justifier que fα est de classe C1 sur D et donner
une équation différentielle du premier ordre vérifié par fα sur D.

2. On définit la famille de polynômes (Lk) par L0 = 1 et Lk(X) = X(X + 1) · · · (X + k − 1)
pour tout k ∈ N∗. Démontrer que pour tout x ∈]− 1, 1[,

fα(x) =

+∞∑
n=0

Ln(α)
xn

n!
.

3. En déduire que, pour tous réels α et β, on a

Ln(α+ β) =

n∑
k=0

(
n

k

)
Lk(α)Ln−k(β).
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Correction.

1. Remarquons d’abord que si α est un entier négatif ou nul, alors fα est un polynôme et son
domaine de définition est R. Sinon fα est défini par fα(x) = exp(−α ln(1− x)) qui est bien
défini si 1− x > 0, donc si x < 1. Dans ce cas, D =] −∞, 1[. Par composition de fonction
de classe C1, fα est de classe C1 sur son domaine de définition et, pour tout x ∈ D, on a

f ′
α(x) =

α

1− x
exp(−α ln(1− x)) =

α

1− x
fα(x).

Ainsi, fα vérifie l’équation différentielle suivante sur D :

(1− x)y′(x)− αy(x) = 0

(cette équation est également vérifiée en x = 1 si 1 ∈ D, c’est-à-dire si −α ∈ N).
2. Posons I =]− 1, 1[. L’équation différentielle précédente se réécrit, sur I,

y′(x)− α

1− x
y(x) = 0.

D’après le théorème de Cauchy linéaire, elle admet une unique solution définie sur I vérifiant
y(0) = 1 : la fonction fα. Considérons ensuite la série entière S(x) =

∑+∞
n=0

Ln(α)
n! xn. Alors,

puisque
Ln+1(α)
(n+1)!

Ln(α)
n!

=
n+ α

n+ 1

n→+∞−−−−−→ 1,

la règle de d’Alembert nous dit que cette série entière est de rayon de convergence 1. En
particulier, elle est de classe C1 sur I, et, pour tout x ∈ I,

S′(x) =

+∞∑
n=1

Ln(α)

(n− 1)!
xn−1.

Ainsi,

(1− x)S′(x) =

+∞∑
n=1

Ln(α)

(n− 1)!
xn−1 −

+∞∑
n=1

Ln(α)

(n− 1)!
xn

=

+∞∑
n=0

Ln+1(α)

n!
xn −

+∞∑
n=1

Ln(α)

(n− 1)!
xn

= L1(α) +

+∞∑
n=1

(
Ln+1(α)

n!
− Ln(α)

(n− 1)!

)
xn.

Or, L1(α) = α = αL0(α) et

Ln+1(α)

n!
− Ln(α)

(n− 1)!
=

Ln+1(α)− nLn(α)

n!

=
α(α+ 1) · · · (α+ n)− nα(α+ 1) · · · (α+ n− 1)

n!

=
α(α+ 1) · · · (α+ n− 1)(α+ n− n)

n!
= αLn(α).

Ainsi, on a prouvé que, pour tout x ∈]− 1, 1[,

(1− x)S′(x) = αS(x).
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Puisque S(0) = L0(α) = 1, l’unicité dans le théorème de Cauchy nous dit que S = fα sur
]− 1, 1[, ce qui est le résultat demandé.

3. Rappelons l’énoncé du théorème concernant le produit de Cauchy de deux séries entières :
si A(x) =

∑
n≥0 anx

n et B(x) =
∑

n≥0 bnxn sont deux séries entières, alors leur produit
de Cauchy est la série entière C(x) =

∑+∞
n=0 (

∑n
k=0 akbn−k)x

n. De plus, si A et B ont
pour rayon de convergence respectifs RA et RB , alors le rayon de convergence de C vérifie
RC ≥ min(RA, RB) et pour tout x ∈ R avec |x| < min(RA, RB), on a

C(x) = A(x)B(x).

Appliquons ce résultat avec A(x) = fα(x) et B(x) = fβ(x), dont la série produit est

+∞∑
n=0

(
n∑

k=0

Lk(α)Ln−k(β)

k!(n− k)!

)
xn.

Tenant compte du fait que fα · fβ = fα+β et que

1

k!(n− k)!
=

(
n

k

)
1

n!
,

on obtient pour tout x ∈]− 1, 1[,

+∞∑
n=0

Ln(α+ β)

n!
xn =

+∞∑
n=0

(
n∑

k=0

(
n

k

)
Lk(α)Ln−k(β)

n!

)
xn.

Par unicité du développement en série entière, on obtient finalement que pour tout n ≥ 0,

Ln(α+ β) =

n∑
k=0

(
n

k

)
Lk(α)Ln−k(β).

Exercice 6.Exercice 6.

Soit a > 0 et f : [−a, a] → R une fonction de classe C∞ telle qu’il existe C,A > 0 vérifiant, pour
tout n ∈ N,

‖f (n)‖∞ ≤ C ·An · n!.

Démontrer que f est développable en série entière en 0.

Correction.

Prenons x ∈ [−a, a]. D’après l’inégalité de Taylor-Lagrange à l’ordre n entre 0 et x, on a∣∣∣∣∣f(x)−
n∑

k=0

f (k)(0)

k!
xk

∣∣∣∣∣ ≤ |x|n+1‖fn+1‖∞
(n+ 1)!

≤ C|xA|n+1.

Soit r = min(a, 1/A). Alors si |x| < r, on a |xA| < 1 et donc |xA|n+1 → 0. On en déduit que la
série de Taylor de f converge vers f sur l’intervalle ] − r, r[, et donc f est développable en série
entière sur cet intervalle.
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Exercice 7.Exercice 7.

Montrer que les fonctions suivantes sont de classe C∞ :
1. f(x) = sin(x)/x si x 6= 0, f(0) = 1.
2. g(x) = ch(

√
x) si x ≥ 0 et g(x) = cos(

√
−x) si x < 0.

3. h(x) = 1
sin x − 1

x si x ∈]− π, 0[∪]0, π[, h(0) = 0.

Correction.

1. Pour x 6= 0, on a, d’après le développement en série entière de sin,

f(x) =

+∞∑
n=0

(−1)n
x2n

(2n+ 1)!
.

Cette égalité est encore vraie en 0, puisque les deux membres sont alors égaux à 1. Ainsi,
f coïncide sur R avec une série entière de rayon de convergence +∞. f est donc de classe
C∞.

2. Pour x ≥ 0, on a

g(x) =

+∞∑
n=0

(
√
x)

2n

(2n)!
=

+∞∑
n=0

xn

(2n)!
.

Pour x < 0, on a :

g(x) =

+∞∑
n=0

(−1)n
(
√
−x)2n

(2n)!
=

+∞∑
n=0

(−1)n
(−1)nxn

(2n)!
=

+∞∑
n=0

xn

(2n)!
.

Ainsi, g coïncide sur R avec la série entière
∑+∞

n=0
xn

(2n)! : elle est donc de classe C∞.
3. Pour x 6= 0, on a

h(x) =
x− sinx

x sinx
.

On développe en série entière le numérateur et le dénominateur, en mettant en facteur le
premier terme. On trouve

h(x) =
x2 ×

∑+∞
p=1(−1)p+1 x2p−1

(2p+1)!

x2
∑+∞

p=0(−1)p x2p

(2p+1)!

.

Posant u(x) =
∑+∞

p=1(−1)p+1 x2p−1

(2p+1)! et v(x) =
∑+∞

p=0(−1)p x2p

(2p+1)! , on voit que pour x 6= 0,
h(x) = u(x)

v(x) . Or, u et v sont de classe C∞ (ce sont des sommes de série entière), v ne s’annule
pas en 0, et de plus u(0)/v(0) = 0 = h(0). Ainsi, h définit bien une fonction de classe C∞

au voisinage de 0 comme quotient de deux fonctions de classe C∞ dont le dénominateur ne
s’annule pas en 0.

Exercice 8.Exercice 8.

On considère la série entière f(x) =
∑+∞

n=1
(−1)n+1

n(2n+1)x
2n+1.

1. Quel est son rayon de convergence, que l’on notera R ? Y-a-t-il convergence aux bornes de
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l’intervalle de définition ?
2. Sur quel intervalle la fonction f est-elle a priori continue ? Démontrer qu’elle est en réalité

continue sur [−R,R].
3. Exprimer, au moyen des fonctions usuelles, la somme de la série dérivée sur ]−R,R[. En

déduire une expression de f sur ]−R,R[.

4. Calculer
∑+∞

n=1
(−1)n+1

n(2n+1) .

Correction.

1. Posons un = (−1)n+1

n(2n+1)x
2n+1. Alors |un+1|

|un| = n(2n+1)x2

(n+1)(2n+3) → |x|2. Ainsi, d’après la règle
de d’Alembert, la série entière est convergente pour |x| < 1 et divergente pour |x| > 1.
Son rayon de convergence est donc 1. De plus, pour x = 1, la série

∑
n≥1

(−1)n+1

n(2n+1) est
(absolument) convergente (on peut aussi prouver qu’elle converge d’après le critère des
séries alternées). De même, pour x = −1, la série

∑
n≥1

−1
n(2n+1) est convergente. f est donc

définie sur [−1, 1].
2. La théorie des séries entières nous dit que f est continue sur son intervalle ouvert de

convergence, c’est-à-dire sur ]− 1, 1[. Pour prouver la continuité sur [−1, 1], on va prouver
qu’il y a convergence normale sur tout l’intervalle [−1, 1]. En effet, pour tout x ∈ [−1, 1],
on a ∣∣∣∣ (−1)n+1xn

n(2n+ 1)

∣∣∣∣ ≤ 1

n(2n+ 1)

et le membre de droite de l’inégalité est le terme général d’une série numérique convergente
(insistons sur le fait qu’il ne dépend pas de x). La série est donc normalement convergente
sur [−1, 1]. Comme chaque fonction x 7→ (−1)n+1xn

n(2n+1) est continue sur [−1, 1], on en déduit
que f est continue sur [−1, 1].

3. La série dérivée est, pour |x| < 1,

f ′(x) =

+∞∑
n=1

(−1)n+1

n
x2n = ln(1 + x2).

En effet, pour x ∈] − 1, 1[, on a 0 ≤ x2 < 1 et on est bien dans le domaine de validité
du développement en série entière de ln(1 + u). Puisque f(0) = 0, on en déduit f(x) =∫ x

0
ln(1 + t2)dt. On calcule cette intégrale en effectuant une intégration par parties :

f(x) =

∫ x

0

1× ln(1 + t2)dt

=
[
t ln(1 + t2)

]x
0
−
∫ x

0

2t2

1 + t2
dt

= x ln(1 + x2)− 2

∫ x

0

t2 + 1− 1

t2 + 1
dt

= x ln(1 + x2)− 2

∫ x

0

(
1− 1

t2 + 1

)
dt

= x ln(1 + x2)− 2 [t− arctan(t)]x0
= x ln(1 + x2)− 2x+ 2 arctanx.
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4. L’égalité f(x) = x ln(1 + x2) − 2x + 2 arctanx n’est valable que pour x ∈] − 1, 1[. Mais
le membre de droite comme celui de gauche sont continus en 1. Par continuité, l’égalité
précédente reste vraie sur [0, 1] tout entier. On conclut que

+∞∑
n=1

(−1)n+1

n(2n+ 1)
= f(1) = ln(2)− 2 +

π

2
.

Exercice 9.Exercice 9.

On considère la série entière f(x) =
∑+∞

n=2
(−1)n

n(n−1)x
n.

1. Déterminer le domaine de définition de f .
2. Démontrer que f est continue sur son domaine de définition.
3. Exprimer f ′, puis f , à l’aide de fonctions usuelles sur l’intervalle ]− 1, 1[.
4. Déduire des questions précédentes la valeur de

∑
n≥2

(−1)n

n(n−1) .

Correction.

1. Le rayon de convergence de la série entière est 1. De plus, puisque∣∣∣∣ (−1)n

n(n− 1)

∣∣∣∣ ≤ C

n2

on a aussi convergence en 1 et −1. L’intervalle de convergence est donc [−1, 1].
2. Les théorèmes usuels concernant les séries entières ne donnent la continuité que sur l’inter-

valle ouvert ]− 1, 1[. Si on veut obtenir la continuité sur l’intervalle fermé, il faut aller plus
loin ! Pour cela, on va montrer la convergence normale de la série sur l’intervalle [−1, 1]. En
effet, pour tout x ∈ [−1, 1] et tout n ≥ 2, on a∣∣∣∣ (−1)nxn

n(n− 1)

∣∣∣∣ ≤ C

n2

et cette dernière série est convergente. Puisque chaque fonction x 7→ (−1)n

n(n−1)x
n est continue

sur [−1, 1], on en déduit la continuité de f sur [−1, 1].
3. f est dérivable sur ]− 1, 1[ et on a

f ′(x) =

+∞∑
n=2

(−1)n

n− 1
xn−1 = ln(1 + x).

Par intégration, pour tout x ∈]− 1, 1[, on a

f(x) = (1 + x) ln(1 + x)− x+ C.

La constante C se calcule en remarquant que f(0) = 0 = C.
4. L’égalité précédente est, a priori, vraie sur ]−1, 1[, mais puisque f et x 7→ (1+x) ln(1+x)−x

sont continues en 1, elle est aussi vraie en 1. On en déduit∑
n≥1

(−1)n

n(n− 1)
= f(1) = 2 ln(2)− 1.

10



2. Exercices d’entraînement

a. Régularité des séries entières et développements en série entières

Exercice 10.Exercice 10.

Soit f l’application définie sur ]− 1, 1[ par f(x) = exp(λ arcsinx), λ ∈ R.
1. Former une équation différentielle linéaire du second ordre vérifiée par f .
2. Chercher les solutions de l’équation différentielle obtenue qui sont développables en série

entière et vérifient y(0) = 1 et y′(0) = λ.
3. En déduire que f est développable en série entière sur ]− 1, 1[.

Correction.

1. On dérive deux fois f :

f(x) = exp(λ arcsinx)

f ′(x) =
λ√

1− x2
exp(λ arcsinx)

f ′′(x) =
λx

(1− x2)3/2
exp(λ arcsinx) +

λ2

1− x2
exp(λ arcsinx).

On trouve que f est solution de l’équation différentielle suivante :

(1− x2)y′′ − xy′ − λ2y = 0.

2. On suppose qu’il existe une solution développable en série entière y(t) =
∑

n≥0 anx
n sur

] − R,R[ vérifiant y(0) = 1 et y′(0) = λ. y′ est somme de
∑

n≥0(n + 1)an+1x
n et y′′ est

somme de
∑

n≥0(n + 1)(n + 2)an+2x
n. La fonction t 7→ (1 − x2)y′′ − xy′ − λ2y est donc

somme de la série entière∑
n≥0

(
(n+ 1)(n+ 1)an+2 + (−n(n− 1)− n− λ2)an

)
xn.

Ceci doit être identiquement nul sur ]−R,R[. Par unicité du développement en série entière,
on obtient, pour tout n ∈ N,

an+2 =
n2 + λ2

(n+ 1)(n+ 2)
an.

De plus, a0 = 1 (car y(0) = 1) et a1 = y′(0) = λ. On trouve ainsi une unique suite (an)
solution. On peut calculer expliciter an, en distinguant les termes pairs et les termes impairs
(le calcul est laissé au lecteur). Réciproquement, la suite (an) précédente définit une série
entière de rayon de convergence 1 d’après le critère de d’Alembert (puisque an+2/an → 1).
Cette série entière est, en remontant les calculs, solution de l’équation différentielle avec les
conditions initiales voulues.

3. L’équation différentielle (1−x2)y′′−xy′−λ2y = 0 est une équation différentielle linéaire du
second ordre, et 1− x2 6= 0 sur ]− 1, 1[. Il existe donc une unique solution à cette équation
définie sur ] − 1, 1[ et vérifiant y(0) = 1 et y′(0) = λ. f et la série entière trouvée à la
question précédente conviennent. On en déduit qu’elles sont égales. Autrement dit, f est
développable en série entière, et f(x) =

∑
n≥0 anx

n.

11



Exercice 11.Exercice 11.

Soit f la fonction définie sur R par f(x) = ex
2/2
∫ x

0
e−t2/2dt.

1. Étudier la parité de f .
2. Justifier que f est développable en série entière.
3. En formant une équation différentielle vérifiée par f , déterminer ce développement.

Correction.

1. La fonction x 7→ ex
2/2 est paire. La fonction x 7→

∫ x

0
e−t2/2dt est impaire (faire le change-

ment de variables u = −t dans l’intégrale). Donc f est impaire.
2. La fonction x 7→ ex

2 est développable en série entière, de rayon de convergence +∞. Toute
primitive d’une fonction développable en série entière de rayon de convergence infini vérifie
la même propriété. C’est en particulier le cas de x 7→

∫ x

0
e−t2/2dt. Par produit, f est

développable en série entière de rayon de convergence +∞.
3. Par dérivation d’un produit, on a

f ′(x) = xex
2/2

∫ x

0

e−x2/2dt+ 1 = xf(x) + 1.

f est donc solution de l’équation différentielle y′ = xy + 1. Écrivons ensuite f(x) =∑
n≥0 anx

2n+1 le développement en série entière de f (on sait qu’il a cette forme puisque
f est impaire). Introduisant ce développement en série entière dans l’équation différentielle
(et utilisant l’unicité d’un développement en série entière), on trouve que, pour tout n ≥ 1,

an =
an−1

(2n+ 1)

et a0 = 1. On en déduit finalement que

f(x) =
∑
n≥0

2nn!

(2n+ 1)!
x2n+1.

Remarquons qu’on aurait aussi pu obtenir le développement en série entière de f en utilisant
le même argument que celui utilisé pour son existence, c’est-à-dire en utilisant le produit de
Cauchy des développements en série entière de ex

2/2 et x 7→
∫ x

0
e−t2/2dt. Procédant ainsi, on

ne trouverait pas facilement la même réponse, mais plutôt un terme devant x2n+1 qui s’écrit
comme une somme. Par identification, on en déduirait une jolie identité combinatoire.

Exercice 12.Exercice 12.

Soit f une fonction de classe C∞ sur un intervalle ouvert I contenant 0 telle que f , et toutes ses
dérivées, sont positives sur I. Soit α > 0 tel que [−α, α] ⊂ I. On veut prouver dans cet exercice
que f est somme de sa série de Taylor sur l’intervalle ]− α, α[.

1. Justifier que, pour tout x ∈ [−α, α],

f(x) = f(0) + xf ′(0) + · · ·+ xn

n!
f (n)(0) + xn+1

∫ 1

0

(1− u)n

n!
f (n+1)(xu)du.

12



On pose alors, pour tout x ∈ [−α, α], Rn(x) = xn+1
∫ 1

0
(1−u)n

n! f (n+1)(xu)du.

2. Démontrer que, si |x| < α, alors |Rn(x)| ≤ |x/α|n+1Rn(α).
3. Conclure.

Correction.

1. Il s’agit simplement de la formule de Taylor avec reste intégral, après changement de va-
riables.

2. On sait que fn+1 est croissante sur I puisque f (n+2) ≥ 0. On en déduit que, pour tout
u ∈ [0, 1], f (n+1)(xu) ≤ f (n+1)(αu). Par intégration, on en déduit immédiatement le résultat
demandé.

3. Il s’agit de démontrer que Rn(x) tend vers 0. D’après l’inégalité précédente, il suffit de
démontrer que la suite (Rn(α)) est bornée. Mais, en reprenant le résultat de la première
question pour x = α, et en observant que tous les termes apparaissant dans la somme sont
positifs, on trouve que Rn(α) ≤ f(α). Et donc (Rn(x)) tend bien vers 0.

3. Exercices d’approfondissement

a. Régularité des séries entières et développements en série entières

Exercice 13.Exercice 13.

1. Pour k ∈ N, démontrer que
∫ +∞
0

t2k+1e−t2dt = k!
2 .

2. Déterminer le développement en série entière en 0 de

f : x 7→
∫ +∞

0

e−t2 sin(tx)dt

(a) en procédant à une intégration terme à terme ;
(b) en déterminant une équation différentielle dont le fonction est solution.

Correction.

1. La fonction t 7→ t2k+1e−t2 est continue sur [0,+∞[ et, au voisinage de +∞, on a t2k+1e−t2 =

o(t−2). Ceci justifie la convergence de Ik =
∫ +∞
0

t2k+1e−t2dt. De plus, en réalisant une
intégration par parties (on intègre te−t2 et on dérive t2k), on a pour k ≥ 1

Ik =

[
−1

2
t2k+1e−t2

]+∞

0

+ k

∫ +∞

0

t2k−1e−t2dt = kIk−1.

Comme de plus

I0 =

∫ +∞

0

te−t2dt =

[
−1

2
e−t2

]+∞

0

=
1

2
,

on en déduit que Ik = k!
2 .
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2. (a) Puisque la fonction sinus est développable en série entière de rayon de convergence
égal à +∞, on sait que pour tout x ∈ R et tout t ∈ [0,+∞[, on a

sin(xt) =
+∞∑
k=0

(−1)k

(2k + 1)!
(tx)2k+1,

c’est-à-dire que

f(x) =

∫ +∞

0

+∞∑
k=0

(−1)k

(2k + 1)!
(tx)2k+1e−t2dt.

On va ensuite permuter la série et l’intégrale en vérifiant les hypothèses du théorème
d’intégration terme à terme. En effet, on a∫ +∞

0

∣∣∣∣ (−1)k

(2k + 1)!
(tx)2k+1e−t2

∣∣∣∣ dt ≤ |x|2k+1

(2k + 1)!
Ik =

k!

2(2k + 1)!
|x|2k+1.

Or, posons uk = k!
2(2k+1)! |x|

2k+1. On a

uk+1

uk
=

(k + 1)|x|2

(2k + 3)(2k + 2)
→ 0.

Par le critère de d’Alembert, la série
∑

k uk converge, il en est donc de même de la
série

∑
k

∫ +∞
0

∣∣∣ (−1)k

(2k+1)! (tx)
2k+1e−t2

∣∣∣ dt. Par le théorème d’intégration terme à terme,
on peut permuter la série et l’intégration, et on obtient donc

f(x) =

+∞∑
k=0

∫ +∞

0

(−1)k

(2k + 1)!
(tx)2k+1e−t2dt =

+∞∑
k=0

(−1)kk!

2(2k + 1)!
x2k+1.

(b) On va appliquer le théorème de dérivation d’une intégrale à paramètres. Pour cela,
posons g(x, t) = e−t2 sin(tx) qui est de classe C∞ sur R× [0,+∞[. De plus, on a

∂g

∂x
(x, t) = te−t2 cos(tx)

ce qui implique que, pour tout x ∈ R et tout t ∈ [0,+∞[, on a∣∣∣∣∂g∂x (x, t)
∣∣∣∣ ≤ te−t2 .

Cette dernière fonction (qui ne dépend plus de x) est intégrable sur [0,+∞[. Ainsi, f
est dérivable et

f ′(x) =

∫ +∞

0

te−t2 cos(tx)dt.

Pour former une équation différentielle vérifiée par f , on va intégrer par parties, en
intégrant te−t2 et en dérivant cos(tx). Il vient

f ′(x) =

[
−1

2
e−t2 cos(tx)

]+∞

0

− 1

2

∫ +∞

0

e−t2 sin(tx)dt = 1

2
− 1

2
f(x).

Ainsi, f est solution de l’équation différentielle 2y′ + xy = 1. Il s’agit d’une équation
différentielle linéaire du premier ordre ; d’après le théorème de Cauchy, f est la solution
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de cette équation différentielle vérifiant y(0) = 0. Cherchons maintenant une solution
y(x) =

∑
k≥1 akx

k de cette équation différentielle vérifiant y(0) = 0. On a

2

+∞∑
k=1

kakx
k−1 +

+∞∑
k=0

akx
k+1 = 1

soit

2a1 +

+∞∑
k=0

((k + 2)ak+2 + ak)x
k+1 = 1.

Par unicité du développement en série entière, on en déduit que a1 = 1
2 puis que ak+2 =

−ak

k+2 . Après un calcul standard, on trouve (évidemment !) le même développement en
série entière qu’à la question précédente.

Exercice 14.Exercice 14.

Soit f(x) =
∑+∞

n=0 e
−nen

2ix.
1. Justifier que f est une fonction de classe C∞ sur R.

2. Montrer que, pour chaque k, |f(k)(0)|
k! ≥ kke−k.

3. En déduire que f n’est pas développable en série entière en 0.

Correction.

1. Posons un(x) = e−nen
2ix. Alors un est C∞ sur R et pour tout k ≥ 0, pour tout x ∈ R et

tout n ≥ 0, on a
u(k)
n (x) = (in2)ke−nen

2ix.

Puisque n2ke−n = O(n−2), il existe une constante M > 0 telle que pour tout x ∈ R,

|u(k)
n (x)| ≤ Mn−2.

La série (numérique) qui apparait à droite est convergente, on en déduit que la série des
dérivées k-ièmes

∑
n≥0 u

(k)
n converge normalement (donc uniformément) sur R pour tout

k ≥ 0. Ainsi, f =
∑

n un est de classe C∞.
2. D’après le calcul précédent, on a |f (k)(0)| =

∑
n≥0 n

2ke−n ≥ k2ke−k. Or, kk ≥ k!, et donc

f (k)(0)

k!
≥ kk

k!
kke−k ≥ kke−k.

3. Si la fonction était développable en série entière en 0, il existerait un intervalle non-vide I
centré en 0 tel que, pour tout x ∈ I, f serait somme de sa série de Taylor en 0. Autrement
dit, on aurait

f(x) =
∑
n≥0

f (k)(0)

k!
xk.

Mais pour x 6= 0, cette série ne converge pas car son terme général ne tend pas vers 0. En
effet, ∣∣∣∣f (k)(0)

k!
xk

∣∣∣∣ ≥ kk(x/e)k → +∞
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(on peut aussi vérifier la non-convergence par le critère de d’Alembert). Ainsi, f n’est pas
développable en série entière en 0.

Exercice 15.Exercice 15.

Soit f(z) =
∑

n≥0 anz
n une série entière de rayon de convergence strictement positif. On suppose

de plus que a0 6= 0. Le but est de prouver que la fonction 1/f est développable en série entière
au voisinage de zéro.

1. On suppose que 1/f =
∑

n≥0 bnz
n, avec rayon de convergence strictement positif. Quelle

relation de récurrence vérifie la suite (bn) ?
2. Soit (bn) la suite définie par la relation de récurrence précédente. Montrer qu’il existe une

constante C > 0 telle que, pour tout n ≥ 0, on a

|bn| ≤
Cn

|a0|
.

3. En déduire que 1/f est développable en série entière.

Correction.

1. D’après la formule du produit de Cauchy, on a∑
n≥0

anz
n

∑
n≥0

bnz
n

 =
∑
n≥0

cnz
n = 1

avec cn =
∑n

k=0 akbn−k. La suite (bn) vérifie donc la relation de récurrence{
b0 = 1

a0

bn = −1
a0

∑n
k=1 akbn−k

2. Soit R > 0 tel que |an| ≤ Rn pour n ≥ 1, et on pose C > 0 suffisamment grand pour que

∑
k≥1

Rk

Ck
≤ |a0|

On va prouver par récurrence sur n que |bn| ≤ Cn

|a0| . C’est vrai au rang 0, et si c’est vrai
jusqu’au rang n− 1, alors

|bn| ≤
1

|a0|

n∑
k=1

Rk

Ck

Cn

|a0|
≤ Cn

|a0|
× 1

|a0|

+∞∑
k=1

Rk

Ck
≤ Cn

|a0|
.

3. Soit g(z) =
∑

n≥0 bnz
n. Alors, par la formule sur le produit de Cauchy de deux séries

entières et par définition de (bn), on a f(z)g(z) = 1 dans un voisinage de 0. Autrement dit,
g = 1/f dans un voisinage de 0. 1/f est donc développable en série entière en 0.
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Exercice 16.Exercice 16.

Pour tous les entiers k et n tels que n ≥ 1 et 0 ≤ k ≤ n, on note Dn,k le nombre de bijections
(ou permutations) s de l’ensemble {1, . . . , n} ayant k points fixes, c’est-à-dire telles que

k = card
{
i ∈ {1, . . . , n}; s(i) = i

}
.

On pose D0,0 = 1 et dn = Dn,0. dn désigne le nombre de dérangements, c’est-à-dire de permu-
tations sans point fixe.

1. Dresser la liste de toutes les permutations de {1, 2, 3} et en déduire la valeur de D3,0, D3,1,
D3,2 et D3,3.

2. Montrer que n! =
∑n

k=0 Dn,k.
3. Montrer que Dn,k =

(
n
k

)
Dn−k,0.

4. Montrer que la série entière
∑

n≥0
dn

n! z
n a un rayon de convergence supérieur ou égal à 1.

5. On pose f(x) =
∑+∞

n=0
dn

n! x
n. Montrer que (expx)f(x) = 1

1−x pour |x| < 1.

6. En déduire que dn = n!
∑n

k=0
(−1)k

k! .
7. Soit pn la probabilité pour qu’une permutation prise au hasard soit un dérangement. Quelle

est la limite de pn quand n tend vers +∞ ?

Correction.

1. Puisque {1, 2, 3} a trois éléments, il existe exactement 6 bijections différentes de {1, 2, 3}
dans lui-même :

— l’identité ;
— les 3 transpositions (1 2), (1 3), (2 3).
— les 2 cycles (1 2 3) et (1 3 2).

L’identité a 3 points fixes, les transpositions en ont 1 et les cycles n’en ont pas. On en déduit
que

D3,0 = 2, D3,1 = 3, D3,2 = 0 et D3,3 = 1.

2. Si on note Ak l’ensemble des permutations de {1, . . . , n} ayant k point fixes, alors la famille
A0, . . . , An forme une partition de l’ensemble des permutations de {1, . . . , n}. Ainsi, on a
bien n! =

∑n
k=0 card(Ak) =

∑n
k=0 Dn,k.

3. Pour chaque permutation ayant k points fixes, il y a
—
(
n
k

)
choix possibles de ces k points fixes (choisir k éléments parmi n) ;

— ce choix effectué, la permutation agit comme une permutation sans point fixe sur les
n− k éléments restants. Il y a Dn−k,0 telles permutations.

Le nombre de permutations ayant k points fixes vaut donc
(
n
k

)
Dn−k,0.

4. Clairement, on a 0 ≤ dn ≤ n!, soit |dn||z|n
n! ≤ |z|n. La série converge absolument si |z| < 1,

son rayon de convergence est au moins égal à 1.
5. Puisque les séries entières définissant expx et f(x) ont un rayon de convergence supérieur

ou égal à 1, leur produit de Cauchy est absolument convergent pour |x| < 1. De plus, on a

(expx)f(x) =

+∞∑
n=0

bnx
n avec bn =

n∑
k=0

dn−k

(n− k)!
× 1

n!
.
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Mais
n∑

k=0

dk
k!

× 1

(n− k)!
=

1

n!

n∑
k=0

(
n

k

)
dn−k =

1

n!

n∑
k=0

Dn,k = 1.

On obtient

(expx)f(x) =

+∞∑
n=0

xn =
1

1− x
.

6. De l’égalité (expx)f(x) = 1
1−x , on tire

f(x) =
e−x

1− x
.

On réalise le produit de Cauchy des deux séries entières obtenues à droite et on trouve

f(x) =

+∞∑
n=0

cnx
n avec cn =

n∑
k=0

(−1)k

k!
.

Par identification, on obtient bien dn = n!
∑n

k=0
(−1)k

k! .

7. La probabilité recherchée est pn = dn/n! =
∑n

k=0
(−1)k

k! . Utilisant le développement en série
entière de exp(−x), on trouve que cette probabilité converge vers exp(−1) = 1/e.

Exercice 17.Exercice 17.

On rappelle qu’une involution de {1, . . . , n} est une application s : {1, . . . , n} → {1, . . . , n} telle
que s ◦ s(k) = k pour tout k ∈ {1, . . . , n}. On note In le nombre d’involutions de {1, . . . , n} et
on convient que I0 = 1.

1. Démontrer que, si n ≥ 1, alors
In+1 = In + nIn−1.

2. Démontrer que la série entière S(x) =
∑

n≥0
In
n! x

n converge pour tout x dans ]− 1, 1[. On
note S sa somme.

3. Justifier que, pour tout x ∈]− 1, 1[, on a S′(x) = (1 + x)S(x).
4. En déduire une expression de S(x), puis de In.

Correction.

1. Considérons s une involution de {1, . . . , n + 1}. Ou bien elle fixe n + 1. Dans ce cas, sa
restriction à {1, . . . , n} est une involution de cet ensemble, et il y a In telles involutions.
On bien elle envoie n+ 1 sur un entier k de {1, . . . , n}. Dans ce cas, s(k) = n+ 1 et s agit
comme une involution sur l’ensemble des n− 1 entiers restants. Il y a n choix pour l’entier
k et In−1 choix pour l’involution résultante. On en déduit que

In+1 = In + nIn−1.

2. Une involution est nécessaire bijective. Donc In ≤ n! ce qui prouve bien que le rayon de
convergence de la série associée à S est supérieur ou égal à 1.
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3. On a
(1 + x)S(x) =

∑
n≥0

In
n!

xn +
∑
n≥1

In−1

(n− 1)!
xn = 1 +

∑
n≥1

In − nIn−1

n!
xn.

En utilisant le résultat de la première question, on obtient

(1 + x)S(x) = 1 +
∑
n≥1

In+1

n!
xn = S′(x).

4. La résolution de l’équation différentielle donne

S(x) = ex+
x2

2 = exe
x2

2 .

On développe alors chaque exponentielle en série entière, et on réalise le produit de Cauchy
de ces deux séries entières. Après quelques calculs laborieux, on trouve

I2p =

p∑
k=0

(2p)!

2(p−k)(p− k)!(2k)!
et I2p+1 =

p∑
k=0

(2p+ 1)!

2(p−k)(p− k)!(2k + 1)!
.
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