
Corrigé de la feuille d’exercices no18
Mathématiques spéciales

1. Exercices basiques

a. Espaces préhilbertiens

Exercice 1.Exercice 1.

Soit E un espace vectoriel euclidien et x, y deux éléments de E. Montrer que x et y sont ortho-
gonaux si et seulement si ‖x+ λy‖ ≥ ‖x‖ pour tout λ ∈ R.

Correction.

Remarquons que, puisque tout est positif, l’inégalité est équivalente à ‖x+ λy‖2 ≥ ‖x‖2. Or,

‖x+ λy‖2 = ‖x‖2 + 2λ〈x, y〉+ λ2‖y‖2

et donc l’inégalité est équivalente à

2λ〈x, y〉+ λ2‖y‖2 ≥ 0.

Supposons d’abord que x est orthogonal à y, et donc que 〈x, y〉 = 0. Alors l’inégalité précédente
est bien vérifiée pour tout λ ∈ R. Réciproquement, supposons que, pour tout λ ∈ R,

2λ〈x, y〉+ λ2‖y‖2 ≥ 0 ⇐⇒ λ(2〈x, y〉+ λ‖y‖) ≥ 0.

Dressant le tableau de signes de ce produit, il ne peut être toujours positif que si 2〈x, y〉+ λ‖y‖
est toujours nul, c’est-à-dire si y = 0, ou si 2〈x, y〉 + λ‖y‖ ne s’annule qu’en 0, c’est-à-dire si
〈x, y〉 = 0. Dans les deux cas, on trouve bien que x et y sont orthogonaux.

Exercice 2.Exercice 2.

Soit E un espace préhilbertien, et A et B deux parties de E. Démontrer les relations suivantes :
1. A ⊂ B =⇒ B⊥ ⊂ A⊥.
2. (A ∪B)⊥ = A⊥ ∩B⊥.
3. A⊥ = vect(A)⊥ ;
4. vect(A) ⊂ A⊥⊥.
5. On suppose de plus que E est de dimension finie. Démontrer que vect(A) = A⊥⊥.

Correction.

1. Soit y ∈ B⊥. Alors, pour tout x ∈ A, on a x ∈ B et donc 〈x, y〉 = 0, ce qui prouve que
y ∈ A⊥.
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2. On commence par prendre x ∈ (A ∪ B)⊥, et prouvons que x ∈ A⊥. En effet, si y ∈ A, on
a y ∈ A ∪ B, et donc 〈x, y〉 = 0. Ceci montre la première inclusion. Réciproquement, si
x ∈ A⊥ ∩ B⊥, prenons y ∈ (A ∪ B). Alors si y ∈ A, on a bien 〈x, y〉 = 0 puisque x ∈ A⊥,
et le cas où y ∈ B se résout de la même façon.

3. D’après la première question, puisque A ⊂ vect(A), on a

vect(A)⊥ ⊂ A⊥.

Réciproquement, si y ∈ A⊥, prenons x ∈ vect(A). Alors on peut trouver des éléments
a1, . . . , an de A et des scalaires λ1, . . . , λn tels que

x = λ1a1 + · · ·+ λnan.

On a alors

〈y, x〉 = 〈y, λ1a1 + · · ·+ λnan〉
= λ1〈y, a1〉+ · · ·+ λn〈y, an〉
= λ10 + · · ·+ λn0

= 0,

et donc y ∈ vect(A)⊥.
4. On va commencer par prouver que A ⊂ (A⊥)⊥. Mais, soit x ∈ A. Choisissons y ∈ A⊥. On

a alors 〈x, y〉 = 0, ce qui prouve que x ∈ A⊥⊥. D’autre part, (A⊥)⊥ est un sous-espace
vectoriel de E qui contient A. Il contient donc le sous-espace vectoriel engendré par A et
on a bien l’inclusion demandée.

5. Notons B = vect(A) et n = dim(E). Alors d’après la question précédente,

(A⊥)⊥ = (B⊥)⊥.

D’autre part,

dim(B⊥) = n− dimB =⇒ dim((B⊥)⊥) = n− dim(B⊥) = dim(B).

Ainsi, d’après la question précédente, on a B ⊂ (B⊥)⊥ et ces deux sous-espaces ont la
même dimension. Ils sont donc égaux !

Exercice 3.Exercice 3.

Dans R3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt
la base suivante :

u = (1, 0, 1), v = (1, 1, 1), w = (−1,−1, 0).

Correction.

Le premier vecteur est simplement u
∥u∥ . Puisque ‖u‖ =

√
2, on a

e1 =

(
1√
2
, 0,

1√
2

)
.
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Cherchons ensuite e′2 sous la forme e′2 = v + λe1 de sorte que 〈e′2, e1〉 = 0. On a

〈e′2, e1〉 = 〈v, e1〉+ λ〈e1, e1〉

=
2√
2
+ λ

=
√
2 + λ.

On doit donc avoir λ = −
√
2 ce qui donne

e′2 = (0, 1, 0).

Il est déjà normalisé et donc on pose e2 = (0, 1, 0). Cherchons ensuite e′3 sous la forme

e′3 = w + λe1 + µe2

de sorte que 〈e′3, e1〉 = 0 et 〈e′3, e2〉 = 0. Il vient :

〈e′3, e1〉 = 〈w, e1〉+ λ〈e1, e1〉

= − 1√
2
+ λ

d’où il vient λ = 1√
2
. Ensuite, on a

〈e′3, e2〉 = 〈w, e2〉+ µ〈e2, e2〉
= −1 + µ

d’où µ = 1. On en déduit que
e′3 =

(
−1

2
, 0,

1

2

)
.

On normalise ce vecteur, et on trouve

e3 =

(
− 1√

2
, 0,

1√
2

)
.

Exercice 4.Exercice 4.

Déterminer une base orthonormale de R2[X] muni du produit scalaire

〈P,Q〉 =
∫ 1

−1

P (t)Q(t)dt.

Correction.

On va orthonormaliser la base canonique (1, X,X2). Commençons par normaliser 1. Sa norme
est
√
2. On pose donc

P =
1√
2
.
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Considérons ensuite
Q1(X) = X + λP

où λ est choisi de sorte que 〈Q1, P 〉 = 0. Mais,

〈Q1, P 〉 =
∫ 1

−1

t√
2
dt+ λ〈P, P 〉 = λ.

On doit donc avoir λ = 0 (en réalité, les deux vecteurs 1 et X sont déjà orthogonaux !), et donc
Q1 = X. On normalise ce vecteur en

Q(X) =

√
3

2
X.

On pose enfin
R1 = X2 + λP + µQ

de sorte que 〈R1, P 〉 = 0 et 〈R1, Q〉 = 0. Mais, X2 est déjà orthogonal à X, et donc par un calcul
similaire au précédent, on va trouver que µ = 0. D’autre part,

〈R1, P 〉 =
1√
2

∫ 1

−1

t2dt+ λ =

√
2

3
+ λ.

On trouve λ = −
√
2
3 et donc

R1(X) = X2 − 1

3
.

Reste à normaliser ce vecteur en

R(X) =

√
5

8
(3X2 − 1).

Ainsi,
(

1
2 ,
√

3
2X,

√
5
8 (3X

2 − 1)
)

est une base orthonormale de R2[X].

Exercice 5.Exercice 5.

Dans R4 muni de son produit scalaire canonique, on considère F le sous-espace vectoriel défini
par

F = {(x, y, z, t) ∈ R4 : x+ y + t = 0 et x+ y + 2z − t = 0}.

Déterminer le projeté orthogonal de u = (1, 8, 1, 1) sur F .
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Correction.

On commencer par rechercher une base de F . Pour cela on écrit que

(x, y, z, t) ∈ F ⇐⇒
{

x+ y + t = 0
x+ y + 2z − t = 0

⇐⇒
{

x+ y + t = 0
2z − 2t = 0 L2 ← L2 − L1

⇐⇒


x = −y −t
y = y
z = t
t = t

Ainsi, si on pose u1 = (−1, 1, 0, 0) et u2 = (−1, 0, 1, 1), on trouve que (u1, u2) est une base de
F . Notons ensuite pF (u) le projeté orthogonal de F sur u et donnons deux méthodes pour le
calculer. Une première méthode consiste à écrire que pF (u) = au1 + bu2 = (−a − b, a, b, b) de
sorte que u − pF (u) = (1 + a + b, 8 − a, 1 − b, 1 − b). On sait que u − pF (u) ⊥ u1. Calculant le
produit scalaire, on trouve

−1− a− b+ 8− a = 0 ⇐⇒ 2a+ b = 7.

On sait aussi que u− pF (u) ⊥ u2 et toujours avec l’aide du produit scalaire :

−1− a− b+ 1− b+ 1− b = 0 ⇐⇒ a+ 3b = 1.

Ainsi, (a, b) est solution du système suivant, que l’on va résoudre :{
a+ 3b = 1
2a+ b = 7

⇐⇒
{

a+ 3b = 1
−5b = 5

⇐⇒
{

a = 4
b = −1

On trouve pF (u) = (−3, 4,−1,−1). Deuxième méthode : on va orthonormaliser la base (u1, u2).
Puisque ‖u1‖ =

√
2, on pose

v1 =
1√
2
(−1, 1, 0, 0).

On cherche ensuite u′
2 = u2 + αv1 de sorte que 〈u′

2, v1〉 = 0. Ceci donne

1√
2
+ α = 0 ⇐⇒ α =

−1√
2
.

On obtient
u′
2 = (−1, 0, 1, 1) +

(
1

2
,−1

2
, 0, 0

)
=

(
−1

2
,−1

2
, 1, 1

)
.

D’autre part,
‖u′

2‖2 =
1

4
+

1

4
+ 1 + 1 =

10

4

et donc on pose
v2 =

u′
2

‖u′
2‖

=
1√
10

(−1,−1, 2, 2).

On sait ensuite que pF (u) = 〈u, v1〉v1 + 〈u, v2〉v2. Or,

〈u, v1〉 =
7√
2

et 〈u, v2〉 =
−5√
10
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de sorte que
〈u, v1〉v1 =

(
−7

2
,
7

2
, 0, 0

)
et

〈u, v2〉v2 =

(
1

2
,
1

2
,−1,−1

)
.

Après un dernier petit calcul, on retrouve bien pF (u) = (−3, 4,−1,−1).

Exercice 6.Exercice 6.

Soit E = C([0, 1]) muni du produit scalaire 〈f, g〉 =
∫ 1

0
f(t)g(t)dt. Calculer le projeté orthogonal

de x2 sur F = vect(1, x).

Correction.

On va étudier deux façons de répondre à cet exercice. La première consiste à calculer une base
orthonormée de F , et d’utiliser l’expression de la projection dans une base orthonormée. Posons
e1 = 1 et e2 = x, qui est une base de F = vect(1, x). On va orthonormaliser cette base en une
base orthonormale (u1, u2). D’abord on a

u1 =
u1

‖u1‖
= 1.

Ensuite, on chercher u′
2 ∈ vect(u1, e2) tel que u′

2 ⊥ u1. Pour cela, on écrit u′
2 = e1 + λ1u1. On a

u′
2 ⊥ u1 ⇐⇒ 〈u′

2, u1〉 = 0

⇐⇒ 〈e1, u1〉+ λ1 = 0

⇐⇒
∫ 1

0

xdx+ λ1 = 0

⇐⇒ λ1 = −1

2
.

Ainsi, u′
2 = x− 1

2 est orthogonal à u1 et vect(u1, u
′
2) = vect(e1, e2). On normalise ensuite u′

2 :

‖u′
2‖2 =

∫ 1

0

(
x− 1

2

)2

dx =
1

3

[(
x− 1

2

)3
]1

0

=
1

3

(
1

8
+

1

8

)
=

1

12

et
u2 =

u′
2

‖u′
2‖

=
√
12u′

2 =
√
3(2x− 1).

Il vient alors
pF (x

2) = 〈x2, u2〉u2 + 〈x2, u1〉u1.

Or
〈x2, u2〉 =

∫ 1

0

√
3(2x3 − x2)dx =

√
3

(
1

2
− 1

3

)
=

√
3

6

et
〈x2, u1〉 =

∫ 1

0

x2dx =
1

3
.
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On obtient pour conclure
pF (x

2) =
1

2
(2x− 1) +

1

3
= x− 1

6
.

L’autre méthode consiste à écrire a priori que pF (x
2) = ax+b puis à déterminer a et b en écrivant

que

x2 − pF (x
2) ⊥ 1 ⇐⇒ 〈x2 − ax− b, 1〉 = 0

⇐⇒
∫ 1

0

(x2 − ax− b)dx = 0

⇐⇒ 1

3
− a

2
− b = 0

et

x2 − pF (x
2) ⊥ x ⇐⇒ 〈x2 − ax− b, x〉 = 0

⇐⇒
∫ 1

0

(x3 − ax2 − bx)dx = 0

⇐⇒ 1

4
− a

3
− b

2
= 0.

On obtient un système que l’on résout facilement :{
1
3 −

a
2 − b = 0

1
4 −

a
3 −

b
2 = 0

⇐⇒
{

a = 1
b = −1/6.

On retrouve bien sûr le même projeté orthogonal pF (x2) = x− 1
6 .

Exercice 7.Exercice 7.

Dans R3 muni de sa structure euclidienne canonique, déterminer la distance de u(3, 4, 3) au plan
P d’équation 2x+ y − z = 0.

Correction.

Un vecteur normal à P est donnée par v = (2, 1,−1). Ainsi, par une formule du cours,

d(u,P) = |〈u, v〉|
‖v‖

=
7√
6
.

Exercice 8.Exercice 8.

Soit E =M2(R) que l’on munit du produit scalaire

〈M,N〉 = Tr(MTN).

On pose F =

{(
a b
−b a

)
; (a, b) ∈ R2

}
.

1. Déterminer une base orthonormée de F⊥.
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2. Calculer la projection de J =

(
1 1
1 1

)
sur F⊥.

3. Calculer la distance de J à F.

Correction.

1. On remarque d’abord qu’une matrice M appartient à F si et seulement si elle s’écrit aI2+bK

avec K =

(
0 1
−1 0

)
Autrement dit, F est l’espace vectoriel engendré par les matrices I2 et

K. Soit M =

(
x y
z t

)
un élément de E. Alors M est élément de F⊥ si et seulement si M

est orthogonale à I2 et à K. Maintenant,

〈M, I2〉 = x+ t et 〈M,K〉 = y − z.

Ainsi, M est élément de F⊥ si et seulement si t = −x et z = y. Autrement dit, on a prouvé
que

F⊥ =

{(
x y
y −x

)
; (x, y) ∈ R2

}
.

Une base de F⊥ est donnée par (A,B), avec

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
.

On va orthonormaliser cette base pour obtenir une base orthonormale de F⊥. On ne va
pas avoir à utiliser le procédé d’orthonormalisation de Gram-Schmidt, car A et B sont déjà
orthogonales : 〈A,B〉 = 0. De plus,

‖A‖ = ‖B‖ =
√
2

comme le montre un rapide calcul. Si on pose

A1 =
1√
2
A et B1 =

1√
2
B,

alors (A1, B1) est une base orthonormée de F⊥.
2. Il suffit d’appliquer le résultat qui exprime le projeté dans une base orthonormale :

pF⊥(J) = 〈J,A1〉A1 + 〈J,B1〉B1

= 0 +
2√
2
B1

= B.

3. On sait que
dist(J, F ) = ‖J − pF (J)‖ = ‖pF⊥(J)‖ = ‖B‖ =

√
2.
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Exercice 9.Exercice 9.

Soit E = R3[X] muni du produit scalaire suivant :

(a0 + a1X + a2X
2 + a3X

3, b0 + b1X + b2X
2 + b3X

3) = a0b0 + a1b1 + a2b2 + a3b3.

On pose H l’hyperplan H = {P ∈ E; P (1) = 0}.
1. Déterminer une base de H.
2. Déterminer une base orthonormale de H.
3. En déduire la projection orthogonale de X sur H, puis la distance de X à H.

Correction.

1. Puisque H est un hyperplan de R3[X] (c’est le noyau d’une forme linéaire), sa dimension
est 3. Pour trouver une base de H, il suffit de trouver trois vecteurs indépendants. Posons
par exemple R1(X) = X − 1, R2(X) = X2 − X et R3(X) = X3 − X2. (R1, R2, R3) est
une famille de 3 éléments de H, qui est libre car les degrés respectifs des Ri sont distincts.
On a donc bien une base de l’hyperplan. Il est possible aussi de déterminer une base de
l’hyperplan comme on le fait usuellement quand on connait l’équation d’un sous-espace
vectoriel. Notons P (X) = a0 + a1X + a2X

2 + a3X
3. On a donc

P ∈ H ⇐⇒ a0 + a1 + a2 + a3 = 0

⇐⇒ a0 = −a1 − a2 − a3

⇐⇒


a0 = −a1 −a2 −a3
a1 = a1
a2 = a2
a3 = a3.

Cette méthode donne comme base (X − 1, X2 − 1, X3 − 1).
2. Il suffit d’appliquer le procédé de Gram-Schmidt à partir de l’une des bases construites à

la question précédente. On a donc :

P1 = R1/‖R1‖ =
√

1

2
(X − 1).

Posons P ′
2 = R2 + λP1, avec λ de sorte que (P ′

2, P1) = 0, ce qui entraîne λ = −(P1, R2).
Après normalisation, on trouve

P2 =

√
2

3
(X2 − (X + 1)/2).

On procède de même pour P3, et on trouve

P3 =

√
3

4

(
X3 − (X2 +X + 1)/3

)
.

3. On a

PH(x) =

3∑
j=1

(X,Pj)Pj =
−1
4

(
X3 +X2 − 3X + 1

)
.

Il vient :
d2(x,H) = ‖x‖2 − ‖PH(x)‖2 = 1− 3/4 = 1/4.
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Si on n’avait pas calculé une base orthonormale de H, on aurait pu remarquer que le
polynôme Q = X3 +X2 +X + 1 est normal à l’hyperplan H et donc que

d(X,H) =
|〈X,Q〉|
‖Q‖

=
1

2
.

Exercice 10.Exercice 10.

Soit E = R4 muni de son produit scalaire canonique et de la base canonique B = (e1, e2, e3, e4).
On considère G le sous-espace vectoriel défini par les équations{

x1 + x2 = 0
x3 + x4 = 0.

1. Déterminer une base orthonormale de G.
2. Déterminer la matrice dans B de la projection orthogonale pG sur G.
3. Soit x = (x1, x2, x3, x4) un élément de E. Déterminer la distance de x à G.

Correction.

1. On commence par trouver une base de G. Mais on a

{
x1 + x2 = 0
x3 + x4 = 0

⇐⇒


x1 = x1

x2 = −x1

x3 = x3

x4 = −x3.

On en déduit que (e1 − e2, e3 − e4) est une base de G. Ces deux vecteurs sont déjà ortho-
gonaux, il suffit de les normaliser. Si on pose u1 = 1√

2
(e1 − e2), u2 = 1√

2
(e3 − e4), alors

(u1, u2) est une base orthonormale de G.
2. On va calculer pG(ei) par la formule

pG(ei) = 〈ei, u1〉u1 + 〈ei, u2〉u2.

On en déduit que la matrice de pG dans la base canonique est

1

2


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 .

3. On sait que d(x,G) = ‖x− pG(x)‖. Écrivons x = (x1, x2, x3, x4). Alors

pG(x) =
1

2
(x1 − x2,−x1 + x2, x3 − x4,−x3 + x4)

et donc
x− pG(x) =

1

2
(x1 + x2, x1 + x2, x3 + x4, x3 + x4).

Il vient
d(x,G)2 =

1

2

(
(x1 + x2)

2 + (x3 + x4)
2
)
.
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Exercice 11.Exercice 11.

Soit E = R3 muni de sa structure euclidienne canonique. Soit p ∈ L(E) dont la matrice dans la
base canonique est

A =
1

6

 5 −2 1
−2 2 2
1 2 5

 .

Démontrer que p est une projection orthogonale sur un plan dont on précisera l’équation. Dé-
terminer la distance de (1, 1, 1) à ce plan.

Correction.

On commence par remarquer que A2 = A. Ainsi, p est bien une projection. On va calculer ker(p)
et Im(p). Il suffira ensuite de démontrer que ces deux sous-espaces sont orthogonaux pour pouvoir
conclure. On remarque d’abord que (x, y, z) ∈ ker(p) si et seulement si 5x− 2y + z = 0

−2x+ 2y + 2z = 0
x+ 2y + 5z = 0

⇐⇒

 x+ 2y + 5z = 0
6y + 12z = 0

−12y − 24z = 0

⇐⇒

 x = −z
y = −2z
z = z

Ainsi, ker(p) = vect(u), où u = (−1,−2, 1). On en déduit (on sait déjà que p est une projection)
que Im(p) est de dimension 2. Puisque p(e1) et p(e2) sont indépendants, en posant v = (5,−2, 1)
et w = (−2, 2, 2), on en déduit que Im(p) = vect(v, w). Pour démontrer que p est une projection
orthogonale, il reste à prouver que ker(p) ⊥ Im(p). Mais u ⊥ v et u ⊥ w, donc on a bien
vect(u) ⊥ vect(v, w). Puisque u est un vecteur normal au plan Im(p), une équation de ce plan est

−x− 2y + z = 0.

Enfin, on calcule la distance de (1, 1, 1) au plan Im(p) par la formule du cours :

d =
|〈u, (1, 1, 1)〉|
‖u‖

=
| − 1− 2 + 1|√

6
=

2√
6
.

Exercice 12.Exercice 12.

Dans R3 muni de sa structure euclidienne canonique, déterminer la distance de M(3, 4, 5) au
plan P d’équation 2x+ y − z + 2 = 0.

Correction.

Un vecteur normal du plan est u = (2, 1,−1). Un point du plan est A = (0, 0, 2). On en déduit
que la distance recherchée est

d =
|〈u,
−−→
AM〉|
‖u‖

=
〈(2, 1,−1), (3, 4, 3)〉√

6
=

7√
6
.
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b. Adjoint

Exercice 13.Exercice 13.

Soit E un espace vectoriel euclidien et soit u ∈ L(E). Démontrer que rg(u) = rg(u∗ ◦ u).

Correction.

D’après le théorème du rang, il suffit de démontrer que

ker(u) = ker(u∗ ◦ u).

Déjà, il est clair que ker(u) ⊂ ker(u∗ ◦ u). Réciproquement, soit x ∈ E tel que u∗(u(x)) = 0. En
particulier, on a

〈u∗(u(x)), x〉 = 0 =⇒ 〈u(x), u(x)〉 = ‖u(x)‖2 = 0.

Ainsi, x ∈ keru et on a bien l’égalité souhaitée.

Exercice 14.Exercice 14.

Soit E un espace vectoriel euclidien. Pour f ∈ L(E), on note ρ(f) =
max{|λ|; λ valeur propre de f}. On rappelle que ‖f‖ = sup{‖f(x)‖; ‖x‖ ≤ 1}.

1. On suppose que f est autoadjoint. Montrer que ‖f‖ = ρ(f).
2. On ne suppose plus que f est autoadjoint. Montrer que ‖f‖2 = ‖f∗f‖. En déduire que
‖f‖ =

√
ρ(f∗f).

Correction.

1. Soit (e1, . . . , en) une base orthonormale de E constituée de vecteurs propres pour f . Notons
(λ1, . . . , λn) les valeurs propres associées. Pour x =

∑n
i=1 xiei, on a f(x) =

∑n
i=1 λixiei, et

donc
‖f(x)‖2 =

n∑
i=1

|λi|2x2
i ≤ ρ(f)2‖x‖2,

ce qui prouve que ‖f‖ ≤ ρ(f). D’autre part, il existe k tel que ρ(f) = |λk|. On a alors
‖f(ek)‖ = |λk| = ρ(f), et comme ‖ek‖ = 1, on a ρ(f) ≤ ‖f‖.

2. Remarquons d’abord que f∗f est autoadjoint (car (f∗f)∗ = f∗f). Ceci montre que ρ(f∗f) =
‖f∗f‖. Il reste à prouver que ‖f‖ = ‖f∗f‖1/2. Mais, on a ‖f∗‖ = ‖f‖, et

‖f∗ ◦ f‖ ≤ ‖f∗‖ · ‖f‖ = ‖f‖2.

D’autre part, si x ∈ E,

‖f(x)‖2 = (f∗(f(x)), x) ≤ ‖f∗(f(x))‖ · ‖x‖ ≤ ‖f∗f‖ · ‖x‖2,

ce qui prouve que ‖f‖2 ≤ ‖f∗f‖.

12



Exercice 15.Exercice 15.

Soit E un espace vectoriel euclidien et u ∈ L(E).
1. Montrer que, si (ei) et (fk) sont deux bases orthonormées de E, alors

n∑
i=1

‖u(ei)‖2 =

n∑
k=1

‖u∗(fk)‖2.

2. En déduire que la quantité
∑n

i=1 ‖u(ei)‖2 est indépendant de la base orthonormée choisie.
3. Soit A = (ai,j)1≤i,j≤n une matrice symétrique, λ1, . . . , λn ses valeurs propres, comptées

avec leur multiplicité. Montrer que

∑
1≤i,j≤n

a2i,j =

n∑
k=1

λ2
k.

Correction.

1. On écrit

‖u(ei)‖2 =
n∑

k=1

|〈u(ei), fk〉|2,

de sorte que
n∑

i=1

‖u(ei)‖2 =

n∑
i=1

n∑
k=1

|〈u(ei), fk〉|2

=

n∑
k=1

n∑
i=1

|〈ei, u∗(fk)〉|2

=

n∑
k=1

‖u∗(fk)‖2.

2. Si (ei) et (e′i) sont deux bases orthonormées, alors on aura toujours, (fi) désignant une base
orthonormée fixe

n∑
i=1

‖u(ei)‖2 =
n∑

i=1

‖u(e′i)‖2 =

n∑
k=1

‖u∗(fk)‖2.

La quantité est donc indépendante de la base orthonormée choisie.
3. Soit u l’endomorphisme canoniquement associé à A dans la base canonique (e1, . . . , en) de

Rn. Par un calcul direct, on a aussi

u(ej) =

n∑
i=1

ai,jei

de sorte que
‖u(e1)‖2 + · · ·+ ‖u(en)‖2 =

∑
1≤i,j≤n

a2i,j .

Mais, u est un endomorphisme autoadjoint, il est diagonalisable dans une base orthonormée
(f1, . . . , fn) telle que u(fi) = λifi. On a alors

‖u(f1)‖2 + · · ·+ ‖u(fn)‖2 =

n∑
k=1

λ2
k.

13



D’après le résultat de la question précédente, ces deux quantités sont égales !

Exercice 16.Exercice 16.

Soit E un espace vectoriel euclidien, et f ∈ L(E) tel que pour tout x, ‖f(x)‖ ≤ ‖x‖.
1. Montrer que f∗ a la même propriété.
2. Montrer que f − IdE et f∗ − IdE ont le même noyau.
3. Montrer que E = ker(f − IdE)⊕⊥ Im(f − IdE).
4. Calculer, pour x ∈ E, limp→+∞

1
p

∑p−1
k=0 f

k(x).

Correction.

1. On a :

‖f∗(x)‖2 = (f∗(x), f∗(x)) = (f(f∗(x)), x) ≤ ‖f(f∗(x))‖‖x‖ ≤ ‖f∗(x)‖‖x‖,

où on a utilisé successivement l’inégalité de Cauchy-Schwarz, puis la propriété vérifiée par
f pour y = f∗(x). En simplifiant par ‖f∗(x)‖, on obtient le résultat demandé.

2. Prenons x ∈ ker(f − IdE). On a :

‖f∗(x)− x‖2 = ‖f∗(x)‖2 + ‖x‖2 − 2(x, f∗(x)).

Or, (x, f∗(x)) = (f(x), x) = (x, x) = ‖x‖2. On en déduit que :

‖f∗(x)− x‖2 ≤ ‖f∗(x)‖2 − ‖x‖2 ≤ 0.

Ainsi, f∗(x) − x = 0, et x ∈ ker(f∗ − IdE). On a donc prouvé que ker(f − IdE) ⊂
ker(f∗ − IdE). Puisque (f∗)∗ = f , et que f∗ vérifie la même propriété que f , on en déduit
que l’inclusion inverse est aussi vérifiée.

3. Remarquons que ker(f − IdE) = ker(f∗ − id∗E) = (Im(f − IdE))
⊥, ce qui prouve que les

deux sous-espaces sont supplémentaires orthogonaux.
4. D’après la question précédente, x = x1+x2, où x1 ∈ ker(f−IdE) et x2 ∈ Im(f−IdE). Pour

x1, on a f(x1) = x1, et par suite fk(x1) = x1. On en déduit que limp→+∞
1
p

∑p−1
k=0 f

k(x1) =

x1. Pour x2, x2 s’écrit x2 = f(y)−y. On a f(x2) = f2(y)−f(y), et donc x2+f(x2) = f2(y)−
y. Par récurrence, on prouve que 1

p

∑p−1
k=0 f

k(x2) =
fp(y)−y

p . Mais ‖fp(y)‖ ≤ ‖y‖, et donc
limp→+∞

1
p

∑p−1
k=0 f

k(x2) = 0. En conclusion, on en déduit que limp→+∞
∑p−1

k=0 f
k(x) = x1,

c’est-à-dire que cette limite est le projeté orthogonal de x sur ker(f − IdE).

2. Exercices d’entraînement

a. Espaces préhilbertiens
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Exercice 17.Exercice 17.

On considère E = C([0, 1],R) muni du produit scalaire (f, g) =
∫ 1

0
f(t)g(t)dt. Soit F = {f ∈

E, f(0) = 0}. Montrer que F⊥ = {0}. En déduire que F n’admet pas de supplémentaire
orthogonal.

Correction.

Soit g ∈ F⊥. Remarquons que la fonction h définie par h(x) = xg(x) est dans F . On en déduit
que (g, h) = 0, ce qui donne

∫ 1

0
xg2(x) = 0. Or, la fonction x 7→ xg2(x) est positive et continue

sur [0, 1]. Puisque son intégrale est nulle, c’est qu’il s’agit de la fonction identiquement nulle.
Ainsi, pour tout x > 0, on a g(x) = 0. Maintenant, g est continue, et donc on obtient que g est
identiquement nulle. Ainsi, F⊥ = {0}. D’autre part, si F admettait un supplémentaire orthogonal,
on aurait F⊕F⊥ = E. Ici, F⊕F⊥ = F 6= E. Donc F n’admet pas de supplémentaire orthogonal !

3. Exercices d’approfondissement

a. Espaces préhilbertiens

Exercice 18.Exercice 18.

Soit E un espace euclidien, f ∈ L(E) et λ > 0. On dit que f est une similitude de rapport λ si
pour tout x ∈ E, ‖f(x)‖ = λ‖x‖.

1. Question préliminaire : soient u, v ∈ E tels que u+ v ⊥ u− v. Démontrer que ‖u‖ = ‖v‖.
2. Démontrer que f est une similitude de rapport λ si et seulement si, pour tous x, y ∈ E,
〈f(x), f(y)〉 = λ2〈x, y〉.

3. On souhaite prouver que f est une similitude si et seulement f est non-nulle et conserve
l’orthogonalité : pour tout couple (x, y) ∈ E, si x ⊥ y, alors f(x) ⊥ f(y).
(a) Prouver le sens direct.
(b) Soit (e1, . . . , en) une base orthonormale de E. Démontrer que, pour tout couple (i, j),
‖f(ei)‖ = ‖f(ej)‖.

(c) Démontrer le sens réciproque.

Correction.

1. On va utiliser la formule de polarisation

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Si on applique cette formule à x = u+ v et y = u− v, x et y sont orthogonaux et on trouve
‖u‖ = ‖v‖.

2. Bien sûr, le sens réciproque est trivial puisqu’il suffit de choisir x = y. Réciproquement,
supposons que pour tout x ∈ E, on a ‖f(x)‖ = λx. Alors, par la formule de polarisation
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rappelée ci-dessus qu’on utilise deux fois :

〈f(x), f(y)〉 =
1

4

(
‖f(x+ y)‖2 − ‖f(x− y)‖2

)
=

1

4

(
λ2‖x+ y‖2 − λ2‖x− y‖2

)
=

λ2

4

(
‖x+ y‖2 − ‖x− y‖2

)
= λ2〈x, y〉.

3. (a) C’est trivial d’après la question précédente.
(b) On sait que ei + ej ⊥ ei − ej . Puisque f préserve l’orthogonalité, f(ei) + f(ej) ⊥

f(ei)− f(ej). Et d’après la première question, ‖f(ei)‖ = ‖f(ej)‖.
(c) Soit λ > 0 tel que ‖f(ei)‖ = λ‖ei‖ (λ ne dépend pas de i d’après la question précédente,

et est strictement positif sinon f serait nulle). On va démontrer que f est une similitude
de rapport λ. Soit x ∈ E qui s’écrit

x =

n∑
i=1

xiei.

Alors
f(x) =

n∑
i=1

xif(ei).

La famille (f(ei)) étant orthogonale, on a

‖f(x)‖2 =

n∑
i=1

|xi|2‖f(ei)‖2

= λ2
n∑

i=1

|xi|2

= λ2‖x‖2.

f est bien une similitude de rapport λ.

Exercice 19.Exercice 19.

Soit n et p deux entiers naturels avec p ≤ n. On munit Rn du produit scalaire canonique et on
identifie Rn avec Mn,1(R). On considère une matrice A ∈Mn,p(R) de rang p et B ∈Mn,1(R).

1. Démontrer qu’il existe une unique matrice X0 de Mp,1(R) telle que

‖AX0 −B‖ = inf{‖AX −B‖; X ∈Mp,1(R)}.

2. Montrer que X0 est l’unique solution de

ATAX = ATB.

3. Application : déterminer

inf{(x+ y − 1)2 + (x− y)2 + (2x+ y + 2)2; (x, y) ∈ R2}.
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Correction.

1. Puisque A est de rang p, l’application X 7→ AX qui va deMp,1(R) dans Im(A) est injective.
Or, inf{‖AX−B‖; X ∈Mp,1(R)} est la distance de B à Im(A). Cette distance est atteinte
uniquement au projeté orthogonal sur Im(A) (qui est de dimension finie) de B. Ce projeté
orthogonal s’écrit de façon unique AX0.

2. On a

AX0 = pIm(A)(B) ⇐⇒ ∀Z ∈ Im(A), AX0 −B ⊥ Z

⇐⇒ ∀X ∈Mp,1(R), AX0 −B ⊥ AX

⇐⇒ ∀X ∈Mp,1(R), (AX)T (AX0 −B) = 0

⇐⇒ ∀X ∈Mp,1(R), XT (ATAX0 −ATB) = 0

⇐⇒ ATAX0 = ATB.

X0 est donc bien l’unique solution de ATAX = ATB.

3. Posons A =

 1 1
1 −1
2 1

, B =

 1
0
−2

. On vérifie facilement que le rang de A est 2. La

borne inférieure est donc atteinte en X0 =

(
x0

y0

)
solution de ATAX0 = ATB.. Or

ATAX0 =

(
6 2
2 3

)
, ATB =

(
−3
−1

)
.

On vérifie que x0 = −1/2 et y0 = 0, et donc l’infimum recherché vaut 7/2.
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