Mathématiques spéciales

Corrigé de la feuille d’exercices n°18

1. Exercices basiques
a. Espaces préhilbertiens

Exercice 1.

Soit F un espace vectoriel euclidien et z,y deux éléments de E. Montrer que = et y sont ortho-
gonaux si et seulement si ||z + Ay|| > ||z|| pour tout A € R.

Remarquons que, puisque tout est positif, I'inégalité est équivalente a ||z + Ay|* > [|z||?. Or,
l + Xyll* = [|2]|* + 2A\(z, y) + N[ly[|?
et donc l'inégalité est équivalente a
2X(z,y) + N|ly[I* > 0.

Supposons d’abord que z est orthogonal & y, et donc que (z,y) = 0. Alors I'inégalité précédente
est bien vérifiée pour tout A € R. Réciproquement, supposons que, pour tout A € R,

2M(z,y) + M|yl > 0 <= A 2(z,y) + Aljy||) > 0.

Dressant le tableau de signes de ce produit, il ne peut étre toujours positif que si 2(z,y) + A||y||
est toujours nul, c’est-a-dire si y = 0, ou si 2(z,y) + A|ly|| ne s’annule qu’en 0, c’est-a-dire si
(z,y) = 0. Dans les deux cas, on trouve bien que z et y sont orthogonaux.

Exercice 2.

Soit E' un espace préhilbertien, et A et B deux parties de E. Démontrer les relations suivantes :
1. ACB = B+ c At

. (AuB)t = A+t n Bt

. At =vect(A)*;

. vect(A4) C AL

. On suppose de plus que E est de dimension finie. Démontrer que vect(A) = A++.

T = W N

1. Soit y € B*. Alors, pour tout * € A, on a € B et donc (z,y) = 0, ce qui prouve que
ye At



2. On commence par prendre x € (AU B)*, et prouvons que z € A+, En effet, si y € A, on
ay € AU B, et donc (x,y) = 0. Ceci montre la premiére inclusion. Réciproquement, si
x € At N B, prenons y € (AU B). Alors si y € A, on a bien (z,y) = 0 puisque z € AL,
et le cas ou y € B se résout de la méme fagon.

3. D’apres la premiére question, puisque A C vect(A), on a
vect(A)t C AL

Réciproquement, si y € AL, prenons z € vect(A). Alors on peut trouver des éléments
ai,...,a, de A et des scalaires Aq,..., A, tels que

T =MNa;+ -+ Aay.

On a alors
(y,z) = (y, a1+ + Apan)
— )\1<y7a1>+"'+)‘n<y7an>
= MO+---4+X,0
= O,

et donc y € vect(A)*L.

4. On va commencer par prouver que A C (A1)1. Mais, soit # € A. Choisissons y € A-. On
a alors (r,y) = 0, ce qui prouve que = € AL, D’autre part, (A1)* est un sous-espace
vectoriel de E qui contient A. Il contient donc le sous-espace vectoriel engendré par A et
on a bien l'inclusion demandée.

5. Notons B = vect(A) et n = dim(FE). Alors d’apres la question précédente,
(A4)t = (BYL.
D’autre part,
dim(B*) =n —dim B = dim((B*)*) = n — dim(B*) = dim(B).

Ainsi, d’aprés la question précédente, on a B C (B1)* et ces deux sous-espaces ont la
méme dimension. Ils sont donc égaux!

Exercice 3.

Dans R? muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt
la base suivante :
U= (1507 1)7 v = (1a la 1)7 w = (_la _170)'

Le premier vecteur est simplement m Puisque |lu|| = v/2, on a

(o)



Cherchons ensuite e} sous la forme e}, = v 4+ Ae; de sorte que (e5,e;) = 0. On a

(eg,e1) = (v,e1) + Mey,en)
2

= ﬁ +A
= V24
On doit donc avoir A = —/2 ce qui donne
eh = (0,1,0).
Il est déja normalisé et donc on pose es = (0,1, 0). Cherchons ensuite ej sous la forme

es = w+ Aej + pes

de sorte que (e5,e1) =0 et (e}, eq) = 0. Il vient :

(eh,e1) = (w,e1) + Aeq,er)
- —% +
d’ou il vient A = % Ensuite, on a
(e3,e2) = (w,e2) + pfez, e2)
= —14u

d’ou = 1. On en déduit que

11
/7 JR— —
€= ( 2’0’2)'

On normalise ce vecteur, et on trouve

Exercice 4.

Déterminer une base orthonormale de Ry[X] muni du produit scalaire

(P,Q) = /_ 1 P(H)Q(t)dt.

On va orthonormaliser la base canonique (1, X, X?). Commencons par normaliser 1. Sa norme
est v/2. On pose donc



Considérons ensuite

Qi1(X) =X+ AP
ol \ est choisi de sorte que (@1, P) = 0. Mais,

1
(@1, P) = L %dt L AMP,P) = A,

On doit donc avoir A = 0 (en réalité, les deux vecteurs 1 et X sont déja orthogonaux!), et donc

@1 = X. On normalise ce vecteur en
3
-

Ri = X2+ \P+puQ

de sorte que (R, P) = 0 et (R1,Q) = 0. Mais, X? est déja orthogonal & X, et donc par un calcul
similaire au précédent, on va trouver que p = 0. D’autre part,

1 [t V2
R, P)= — 2dt+ X = 2= + 0\
B, Py ﬁ/_l 3

On pose enfin

On trouve \ = —g et donc

1
Ri(X)=X?— 3

R(X) = \/§(3X2 —1).

Ainsi, (%7 \/gX, \/§(3X2 = 1)) est une base orthonormale de Ry[X].

Reste a normaliser ce vecteur en

Exercice 5.

Dans R* muni de son produit scalaire canonique, on considére F le sous-espace vectoriel défini
par
F={(z,y,2,t) ER*: s +y+t=0etx+y+22z—t=0}

Déterminer le projeté orthogonal de v = (1,8,1,1) sur F.



On commencer par rechercher une base de F'. Pour cela on écrit que

z+y+t = 0
(z,y,2,t) € F {m+y+22_t — 0
z+y+t = 0
— { 2z—2t = 0 LQ%LQ*Ll
r = -y —t
— vy =19
z = 4
t = t

Ainsi, si on pose u; = (—1,1,0,0) et ug = (—1,0,1,1), on trouve que (u1,uz) est une base de
F. Notons ensuite pr(u) le projeté orthogonal de F' sur u et donnons deux méthodes pour le
calculer. Une premiére méthode counsiste & écrire que pp(u) = auy + bug = (—a — b,a,b,b) de
sorte que v — pp(u) = (1 +a+b,8 —a,1 —b,1 —b). On sait que u — pr(u) L u;. Calculant le
produit scalaire, on trouve

—1—a—-b+8—a=0 <= 2a+b="T.
On sait aussi que u — pr(u) L uy et toujours avec laide du produit scalaire :
—1—a—-b+1—-b+1-b=0 < a+3b=1.

Ainsi, (a,b) est solution du systéme suivant, que ’on va résoudre :

a+3 = 1 a+3 = 1

{2a+b:7 A { —5 = 5
— @ = 4

b o= -1

On trouve pp(u) = (—3,4,—1,—1). Deuxiéme méthode : on va orthonormaliser la base (uj,us).
Puisque [|u1]| = v/2, on pose
1
v1 = —(~1,1,0,0).

V2

On cherche ensuite u}, = ug + av; de sorte que (u),v1) = 0. Ceci donne
1 =1
—+a=0 <+ a=—.

V2 V2

) 11 11
u2:(_1707171)+ 57_57070 = _57_§a171 D

On obtient

D’autre part,

1 1 10
/12
= t-+14+1=—
et donc on pose
/
1
vy = — 2 (—1,-1,2,2).

sl Vo

On sait ensuite que pp(u) = (u,v1)vy + (u,ve)vs. Or,

et (u,ve) =

(u,00) = = o
RV V10



de sorte que

7T
<u,'l/'1>’l}1 = <_2527070)

11
<U,’U2>’02 = (27 57_15 _1) 0

Aprés un dernier petit calcul, on retrouve bien pp(u) = (3,4, -1, —1).

et

Exercice 6.

Soit E = C([0,1]) muni du produit scalaire (f,g) = fol f(t)g(t)dt. Calculer le projeté orthogonal
de 2% sur F = vect(1, ).

On va étudier deux fagons de répondre a cet exercice. La premiere consiste a calculer une base
orthonormée de F', et d’utiliser ’expression de la projection dans une base orthonormée. Posons
e1 = 1 et eg = x, qui est une base de F' = vect(1,z). On va orthonormaliser cette base en une
base orthonormale (u1,us). D’abord on a

Ui
U = — =
F ]

Ensuite, on chercher ufy € vect(uy,es) tel que uh L up. Pour cela, on écrit uhy = e; + Ajug. On a
uh Lup == {(uhus) =0
= <€1,U1>+/\1=O
1
= / xdr + X =0
0

1
— )\1:—5.

Ainsi, uj = x — § est orthogonal & u; et vect(uy,u}) = vect(e, ez). On normalise ensuite uj
1
e /1 12d 1 n\? L1 1 1
up||® = z—=| de=<|lz—< ==|=-+=]=—=
2 0 2 3 2) |, 3\8 8/ 12

!
Uy = 2 = Vi12uh = v/3(2z — 1).

[l

et

Il vient alors
pF(:cZ) = (x27u2>u2 + (xz, U U .

) (2%, up) = /01 V3(22° — 2%)dz = V3 (1 _ 1) _ V3

et

1
(x% up) z/ 2?dr = 1
0 3



On obtient pour conclure

1 2 1)+ 1 1

—(2z — —=x—-.

2 3 6

L’autre méthode consiste & écrire a priori que pr(2?) = az+b puis & déterminer a et b en écrivant
que

pr(a?) =

2 —pp(x?) L1 <= (2 —azx—b,1)=0
= / (2% — ax — b)dx = 0
2 =0

et

= (2% — ax® — bx)dx = 0
0
1 a b

= 373 37"

Exercice 7.

Dans R3 muni de sa structure euclidienne canonique, déterminer la distance de (3,4, 3) au plan
P d’équation 2x +y — z = 0.

Un vecteur normal & P est donnée par v = (2,1, —1). Ainsi, par une formule du cours,

[{w,0)| _ 7

WP) ="l = 76

Exercice 8.

Soit E = M3(R) que 'on munit du produit scalaire
(M,N) =Tr(MTN).

On poseF:{(_ab 2); (a,b)ERQ}.

1. Déterminer une base orthonormée de F+.



2. Calculer la projection de J = (} 1) sur F-.

3. Calculer la distance de J a F.

1. On remarque d’abord qu’une matrice M appartient a F’ si et seulement si elle s’écrit alo+bK

1
avec K = (_01 O> Autrement dit, F' est ’espace vectoriel engendré par les matrices I et

K. Soit M = :,sz Zt/ un élément de E. Alors M est élément de F- si et seulement si M
est orthogonale & Iy et a K. Maintenant,

(M, I)y=x+tet (M,K)=y— z.

Ainsi, M est élément de F- si et seulement si ¢t = —z et z = y. Autrement dit, on a prouvé

que }u:{(”gj _yx>, (x,y)ERz}.

Une base de F* est donnée par (A, B), avec

1 0 0 1
=0 5) 2= o)
On va orthonormaliser cette base pour obtenir une base orthonormale de F+. On ne va

pas avoir a utiliser le procédé d’orthonormalisation de Gram-Schmidt, car A et B sont déja
orthogonales : (A, B) = 0. De plus,

1Al = 1Bl = v2

comme le montre un rapide calcul. Si on pose

1 1
A= —Aet By = —B,

alors (A1, By) est une base orthonormée de F'*.

2. Il suffit d’appliquer le résultat qui exprime le projeté dans une base orthonormale :

pre(J) = (J, A1)A1 + (J, B1)B1
2
—0+—B
7 1

=B.

3. On sait que
dist(J, F) = ||J = pr(D)ll = llpp ()] = | Bl = v2.



Exercice 9.

Soit E = R3[X] muni du produit scalaire suivant :
(ao + (llX + a2X2 —+ a3X3,b0 + le —+ b2X2 —+ ngS) = aobo —+ a1b1 —+ a262 =+ a3b3.

On pose H 'hyperplan H = {P € E; P(1) =0}.
1. Déterminer une base de H.
2. Déterminer une base orthonormale de H.

3. En déduire la projection orthogonale de X sur H, puis la distance de X a H.

1. Puisque H est un hyperplan de R3[X] (c’est le noyau d’une forme linéaire), sa dimension
est 3. Pour trouver une base de H, il suffit de trouver trois vecteurs indépendants. Posons
par exemple R1(X) = X — 1, Ro(X) = X2 — X et R3(X) = X3 — X2, (Ry, Ra, R3) est
une famille de 3 éléments de H, qui est libre car les degrés respectifs des R; sont distincts.
On a donc bien une base de I’hyperplan. Il est possible aussi de déterminer une base de
I’hyperplan comme on le fait usuellement quand on connait I’équation d’'un sous-espace
vectoriel. Notons P(X) = ag + a1 X + a2 X? + a3 X?3. On a donc

PeH << ay9+a+as+az3=0

< apg = —a1 — ag — as
Gy = —a1 —a2 —as
ay = ay
<~
Ay = as
az = as.

Cette méthode donne comme base (X — 1, X% — 1, X3 —1).
2. 11 suffit d’appliquer le procédé de Gram-Schmidt a partir de 'une des bases construites a
la question précédente. On a donc :

1
Pr=Ri/l|Bi] =4/ 5(X = 1).

Posons P = Ry + APy, avec A de sorte que (P4, P1) = 0, ce qui entraine A = —(P;, Ry).
Apres normalisation, on trouve

Py, = \/E(XQ - (X +1)/2).

On procede de méme pour Ps, et on trouve

P3:\/§(X3—(X2+X+1)/3).

3. On a
_—1

T (X +X7-3X+1).

Il vient :
d*(z, H) = ||z||” — | P ()| =1 - 3/4 = 1/4.



Si on n’avait pas calculé une base orthonormale de H, on aurait pu remarquer que le
polynéme @ = X3 + X2 + X + 1 est normal & I’hyperplan H et donc que

_ X)) _1
d(X, H) = 500 = 5.

Exercice 10.

Soit £ = R* muni de son produit scalaire canonique et de la base canonique B = (ey, 2, €3, €4).
On considere G le sous-espace vectoriel défini par les équations

x1 + To 0
x3+xy = 0.

1. Déterminer une base orthonormale de G.
2. Déterminer la matrice dans B de la projection orthogonale pg sur G.

3. Soit & = (x1,x2,x3,x4) un élément de E. Déterminer la distance de z & G.

1. On commence par trouver une base de G. Mais on a

X1 = X1
T, + T2 0 To = —x1
<
rz3+x4 = 0 T3 = I3
Xy = —X3.

On en déduit que (e; — ea,e3 — e4) est une base de G. Ces deux vecteurs sont déja ortho-
gonaux, il suffit de les normaliser. Si on pose u; = %(el —e3), Uy = %(63 — ey4), alors

(u1,u2) est une base orthonormale de G.

2. On va calculer ps(e;) par la formule
pa(ei) = (ei,ur)ur + (i, ug)us.

On en déduit que la matrice de pg dans la base canonique est

1 -1 0 0
1 -1 1 0 0
2 0o 0 1 -1
0 0 -1 1

3. On sait que d(z,G) = ||z — pa(x)||. Ecrivons & = (z1, 2, 3, 24). Alors
pa(z) = §(x1 — T, —%1 + T2, T3 — T4, —T3 + T4)
et donc ]
T — pe(r) = 5(931 + z2, 21 + T2, 23 + T4, X3 + Ta).

Il vient

d(z,G)? = = ((x1 + 22)* + (23 + 74)) .

DN =

10



Exercice 11.

Soit £ = R? muni de sa structure euclidienne canonique. Soit p € L(F) dont la matrice dans la
base canonique est

1 5 -2 1
Azé -2 2 2
1 2 5

Démontrer que p est une projection orthogonale sur un plan dont on précisera 1’équation. Dé-
terminer la distance de (1,1,1) & ce plan.

On commence par remarquer que A2 = A. Ainsi, p est bien une projection. On va calculer ker(p)
et Im(p). Il suffira ensuite de démontrer que ces deux sous-espaces sont orthogonaux pour pouvoir
conclure. On remarque d’abord que (x,y, z) € ker(p) si et seulement si

¢ —2y+z2z = 0 z+2y+52 = 0
—2rx+2y+2z = 0 — 6y+12z = 0
z+2y+52 = 0 —12y —24z = 0
B = =g
= y = -2z
5 = B

Ainsi, ker(p) = vect(u), ot u = (—1,—2,1). On en déduit (on sait déja que p est une projection)
que Im(p) est de dimension 2. Puisque p(e1) et p(e2) sont indépendants, en posant v = (5, —2, 1)
et w = (—2,2,2), on en déduit que Im(p) = vect(v, w). Pour démontrer que p est une projection
orthogonale, il reste & prouver que ker(p) L Im(p). Mais v L v et w L w, donc on a bien
vect(u) L vect(v,w). Puisque u est un vecteur normal au plan Im(p), une équation de ce plan est

—r—2y+2=0.
Enfin, on calcule la distance de (1,1,1) au plan Im(p) par la formule du cours :

d = |<u7(1a171)>| _ |_1_2+1| _ i
[[ull V6 V6

Exercice 12.

Dans R? muni de sa structure euclidienne canonique, déterminer la distance de M(3,4,5) au
plan P d’équation 2x +y — z+ 2 = 0.

Un vecteur normal du plan est uw = (2,1, —1). Un point du plan est A = (0,0,2). On en déduit
que la distance recherchée est

Ll A (21,-1),3,43) _ 7

[l V6

5

11



b. Adjoint

Exercice 13.

Soit E un espace vectoriel euclidien et soit u € L(E). Démontrer que rg(u) = rg(u* o u).

D’apres le théoreme du rang, il suffit de démontrer que
ker(u) = ker(u* o u).

Déja, il est clair que ker(u) C ker(u* o u). Réciproquement, soit « € E tel que u*(u(z)) = 0. En
particulier, on a
(w(u(z)),2) =0 = (u(@),u(@)) = |u(@)|* =0.

Ainsi, z € keru et on a bien I’égalité souhaitée.

Exercice 14.

Soit FE un espace vectoriel euclidien. Pour f € L(F), on note p(f) =
max{|A|; A valeur propre de f}. On rappelle que || f|| = sup{||f(2)|; =] < 1}.

1. On suppose que f est autoadjoint. Montrer que || f|| = p(f)-
2. On ne suppose plus que f est autoadjoint. Montrer que || f||* = | f*f||. En déduire que

1= v/p(f*f)-

1. Soit (e, ..., e,) une base orthonormale de E constituée de vecteurs propres pour f. Notons
(A1, ..., An) les valeurs propres associées. Pour x = Y1 | ze;, ona f(x) = > 1| Nizse;, et
donc

IF @) = D" NilPaf < p(5)?ell?,
i=1

ce qui prouve que |f| < p(f). D’autre part, il existe k tel que p(f) = |Ax|. On a alors
[1f(er)ll = [Axl = p(f), et comme [lex[| =1, on a p(f) < |[f]]-

2. Remarquons d’abord que f* f est autoadjoint (car (f*f)* = f*f). Ceci montre que p(f*f) =
1£* £1I- I reste & prouver que || f|| = |[f* f||*/?. Mais, on a || f*[| = ||fll, et

£ o F < IF~ 0 - AN = A1

D’autre part, si x € E,

IF@)II* = (F*(f(2)),2) < IF*F@D - Nzl < NFF1 - N,

ce qui prouve que || f|* < [|f*f]l-

12



Exercice 15.

Soit E un espace vectoriel euclidien et u € L(E).

1. Montrer que, si (e;) et (fx) sont deux bases orthonormées de F, alors

ZHu e:)||* = ZHU (fi)l%.

2. En déduire que la quantité Y ., [Ju(e;)||* est indépendant de la base orthonormée choisie.

3. Soit A = (a; i)1<i j<n une matrice symétrique, Ai,...,\, ses valeurs propres, comptées
)15, ) ) ) 5
avec leur multiplicité. Montrer que

n

2 _ 2

E a;; = g AL
k=1

1<i,j<n

1. On écrit

n

e = [fuled), fi)l?,
k=1
de sorte que

Dollue)l® = DD Huler), fu)l?

=1 i=1 k=1

= 33 Kewu (F)F

k=1 i=1
= Z 1 (fi)l12.

2. Si (e;) et (e}) sont deux bases orthonormées, alors on aura toujours, (f;) désignant une base

orthonormée fixe
leu (ed)|I” = ZHU )P = ZHU (fe)ll?.

La quantité est donc 1ndependante de la base orthonormee choisie.

3. Soit v 'endomorphisme canoniquement associé a A dans la base canonique (e, ...,e,) de
R"™. Par un calcul direct, on a aussi

n
=3 e
i=1

de sorte que

lu(en)| + -+ llule) 2= > a?;.

1<i,5<n
Mais, u est un endomorphisme autoadjoint, il est diagonalisable dans une base orthonormée
(f1,---, fn) telle que u(f;) = A; fi- On a alors

)l + -+l fa) | = zv

13



D’apres le résultat de la question précédente, ces deux quantités sont égales!

Exercice 16.

Soit E un espace vectoriel euclidien, et f € L(E) tel que pour tout z, || f(x)] < ||z].
1. Montrer que f* a la méme propriété.
2. Montrer que f — Idg et f* — Idg ont le méme noyau.
3. Montrer que E = ker(f — Idg) @+ Im(f — Idg).

4. Calculer, pour z € E, limp_,4 % Zz;é F(x).

1. Ona:
17 @)I17 = (f*(2), F*(@)) = (F(f* @), 2) < NFF @)l < 117 @),
ou on a utilisé successivement 1'inégalité de Cauchy-Schwarz, puis la propriété vérifiée par

f pour y = f*(z). En simplifiant par || f*(«)||, on obtient le résultat demandé.
2. Prenons z € ker(f — Idg). On a :

1F*(z) = 2l = 17 @)1 + l|z]|* — 2(z, f* (@)
Or, (z, f*(x)) = (f(x),z) = (x,7) = ||z||*>. On en déduit que :
17 (@) = ]|* < |1 f* (@)~ ||l=]1* < 0.

Ainsi, f*(z) —x = 0, et © € ker(f* — Idg). On a donc prouvé que ker(f — Idg) C
ker(f* — Idg). Puisque (f*)* = f, et que f* vérifie la méme propriété que f, on en déduit
que l’inclusion inverse est aussi vérifiée.

3. Remarquons que ker(f — Idg) = ker(f* —idy) = (Im(f — Idg))*, ce qui prouve que les
deux sous-espaces sont supplémentaires orthogonaux.

4. D’apres la question précédente, © = 149, ot 21 € ker(f —Idg) et zo € Im(f —Idg). Pour
x1,0n a f(x1) = 71, et par suite f¥(x1) = z1. On en déduit que lim,_,; « % Zi;é fE(x) =
x1. Pour xo, x9 s’écrit 2 = f(y)—y. Ona f(xs) = fz(yp)—f(y), et donc zo+ f(22) = f2(y)—
y. Par récurrence, on prouve que %Zi;é F(x2) = %. Mais ||f2(y)|| < ||y, et donc
limy, 400 %ZZ;(I) f*(22) = 0. En conclusion, on en déduit que lim, 1 Y pp f*(2) = 21,
c’est-a-dire que cette limite est le projeté orthogonal de x sur ker(f — Idg).

2. Exercices d’entrainement

a. Espaces préhilbertiens
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Exercice 17.

On considére E = C([0,1],R) muni du produit scalaire (f,g) = fol f@®)g(t)dt. Soit F = {f €
E, f(0) = 0}. Montrer que F*+ = {0}. En déduire que F n’admet pas de supplémentaire
orthogonal.

Soit g € F+. Remarquons que la fonction h définie par h(z) = xg(x) est dans F. On en déduit
que (g,h) = 0, ce qui donne fol xg?(x) = 0. Or, la fonction & — xg?(x) est positive et continue
sur [0,1]. Puisque son intégrale est nulle, c’est qu’il s’agit de la fonction identiquement nulle.
Ainsi, pour tout > 0, on a g(z) = 0. Maintenant, g est continue, et donc on obtient que g est
identiquement nulle. Ainsi, F* = {0}. D’autre part, si F' admettait un supplémentaire orthogonal,
on aurait F@F+ = E.Ici, FOF+ = F # E. Donc F n’admet pas de supplémentaire orthogonal !

3. Exercices d’approfondissement

a. Espaces préhilbertiens

Exercice 18.

Soit E un espace euclidien, f € L(F) et A > 0. On dit que f est une similitude de rapport A si
pour tout « € E, ||f(x)] = Al|z]|.
1. Question préliminaire : soient u,v € E tels que u +v L u — v. Démontrer que |Ju] = ||v||.

2. Démontrer que f est une similitude de rapport A si et seulement si, pour tous x,y € F,
(f(@), f(y)) = \*(z,y).

3. On souhaite prouver que f est une similitude si et seulement f est non-nulle et conserve
Porthogonalité : pour tout couple (z,y) € E, si x L y, alors f(z) L f(y).

(a) Prouver le sens direct.

(b) Soit (eq,...,e,) une base orthonormale de E. Démontrer que, pour tout couple (i, 5),
I1f(ea)ll = 11/ (e;)l-

(c) Démontrer le sens réciproque.

1. On va utiliser la formule de polarisation

1
(@) =7 (le+yl* = lle—yl*).

Si on applique cette formule & x = u+v et y = u— v, T et y sont orthogonaux et on trouve
[[ull = [lv]l.

2. Bien siir, le sens réciproque est trivial puisqu’il suffit de choisir x = y. Réciproquement,
supposons que pour tout € F, on a ||f(x)|| = Az. Alors, par la formule de polarisation
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rappelée ci-dessus qu’on utilise deux fois :

(@ f@) = (@ + 9l - 1@ - I?)
= 3 Wz ol = X~ y)?)
)\2
= 2 (el e — ol
= Xz,y)

3. (a) Clest trivial d’apres la question précédente.

(b) On sait que e; + e; L e; — e;. Puisque f préserve lorthogonalité, f(e;) + f(e;) L
f(e;) — f(e;). Et d’apres la premiere question, || f(e;)|| = ||f(e;)]|-

(c) Soit A > 0tel que || f(e;)|| = Allei|| (A ne dépend pas de i d’apres la question précédente,
et est strictement positif sinon f serait nulle). On va démontrer que f est une similitude
de rapport A. Soit z € E qui s’écrit

Tr = Z$161
i=1
Alors .
fl@) = inf(ei)~
i=1

La famille (f(e;)) étant orthogonale, on a
IF @I = D l=lllf el
i=1

n

= N |zl
=1

R

f est bien une similitude de rapport A.

Exercice 19.

Soit n et p deux entiers naturels avec p < n. On munit R™ du produit scalaire canonique et on
identifie R™ avec M,, 1(R). On considére une matrice A € M,, ,(R) de rang p et B € M,, 1(R).

1. Démontrer qu'il existe une unique matrice Xy de M, 1(R) telle que
|AXo - BJ| = inf{|AX — BJ; X € My1(R)}.
2. Montrer que X est 'unique solution de
ATAX = ATB.
3. Application : déterminer

inf{(z +y— 1?4+ (z —y)?* + 2z +y +2)% (z,9) € R*}.
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1. Puisque A est de rang p, Papplication X — AX qui va de M,, 1 (R) dans Im(A) est injective.
Or, inf{||AX — B||; X € M, 1(R)} est la distance de B a Im(A). Cette distance est atteinte
uniquement au projeté orthogonal sur Im(A) (qui est de dimension finie) de B. Ce projeté
orthogonal s’écrit de facon unique AXj.

2. On a

AXo = prm(a)(B) VZ € Im(A), AXo—B1Z

VX € M,1(R), AXg— B L AX

VX € M, 1(R), (AX)T(AXy— B) =0
VX € M,1(R), XT(ATAX, - ATB)=0

AT AX, = ATB.

1reey

Xy est donc bien I'unique solution de ATAX = AT B.

1 1 1
3. Posons A=| 1 -1 |,B= 0 . On vérifie facilement que le rang de A est 2. La

2 1 -2

borne inférieure est donc atteinte en Xy = ( :;0 > solution de ATAX, = ATB.. Or
0
6 2 -3
T _ Tp _
AAX0_<2 3>,AB_<_1>.

On vérifie que g = —1/2 et yo = 0, et donc I'infimum recherché vaut 7/2.
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