
Correction du DS d’Informatique n°2
Mathématiques supérieures le Lundi 3 Novembre 2024

Ce sujet est composé d’un exercice et un problème. Vous prendrez soin de bien justifier vos calculs.
Veillez à bien respecter l’indentation des programmes Python que vous écrirez sur votre copie.

Exercice 1.Exercice 1. gExtrait de Centrale 2015Extrait de Centrale 2015

Correction.

I.A.1) Le + réalise la concaténation entre deux listes :

>>> [1,2,3]+[4,5,6]
[1,2,3,4,5,6]

I.A.2) L’instruction n*L est équivalente à L+...+L avec n termes L donc l’instruction 2*[1,2,3]
est équivalente à [1,2,3]+[1,2,3] :

>>> 2*[1,2,3]
[1,2,3,1,2,3]

I.B

1



1 def smul(a,L):
2 Res = []
3 for i in range(len(L)):
4 Res.append(a*L[i])
5 return Res

I.C.1)

1 def vsom(L1,L2):
2 """ L1 et L2 sont supposées de même taille """
3 Res = []
4 for i in range(len(L1)):
5 Res.append(L1[i]+L2[i])
6 return Res

I.C.2)

1 def vdif(L1,L2):
2 """ L1 et L2 sont supposées de même taille """
3 Res = []
4 for i in range(len(L1)):
5 Res.append(L1[i]-L2[i])
6 return Res
7
8 # ou en utilisant les fonctions précédentes (mais on parcourt deux fois

la liste L2 contre une seule fois avec la fonction précédente)
9

10 def vdif(L1,L2):
11 return vsom(L1,smul(-1,L2))

Problème.Problème. gMines 2017 (début)Mines 2017 (début)

Ce sujet concerne la conception d’un logiciel d’étude de trafic routier. On modélise le déplacement
d’un ensemble de voitures sur des files à sens unique (voir Figure 1). C’est un schéma simple qui
peut permettre de comprendre l’apparition d’embouteillages et de concevoir des solutions pour
fluidifier le trafic.
Le sujet comporte des questions de programmation. Le langage à utiliser est Python.
Notations : soit L une liste,

• on note len(L) sa longueur ;
• pour i entier, 0 ⩽ i < len(L), l’élément de la liste d’indice i est noté L[i] ;
• pour i et j entiers, 0 ⩽ i < j ⩽ len(L), L[i : j] est la sous-liste composée des éléments

L[i], ..., L[j − 1];

• p ∗ L, avec p entier, est la liste obtenue en concaténant p copies de L. Par exemple, 3 ∗ [0]

2



est la liste [0, 0, 0].

Figure 1 – File de circulation

1 - Préliminaires
On considère le cas d’une seule file, illustré par la Figure 1. Une file de longueur n est représentée
par n cases. Une case peut contenir au plus une voiture. Les voitures présentes dans une file
circulent toutes dans la même direction (sens des indices croissants, désigné par les flèches sur
la Figure 1) et sont indifférenciées.

1. Expliquer comment représenter une file de voitures à l’aide d’une liste de booléens.
On rappelle qu’un booléen est un objet Python admettant deux valeurs possibles : soit True
soit False, où True correspond à ”Vrai” et False correspond à ”Faux”.

2. Donner une ou plusieurs instructions Python permettant de définir une liste A représentant
la file de voitures illustrée par la Figure 1.

3. Soit L une liste représentant une file de longueur n et i un entier tel que 0 ⩽ i < n. Définir
en Python la fonction occupe(L, i) qui renvoie True lorsque la case d’indice i de la file est
occupée par une voiture et False sinon.

4. Combien existe-t-il de files différentes de longueur n ? Justifier votre réponse.
5. Écrire une fonction egal(L1, L2) retournant un booléen permettant de savoir si deux listes

L1 et L2 sont égales.
6. Préciser le type de retour de cette fonction.

2 - Déplacement de voitures dans la file
On identifie désormais une file de voitures à une liste. On considère le schéma de la Figure 2
représentant un exemple de file. Une étape de simulation pour une file consiste à déplacer les
voitures de la file, à tour de rôle, en commençant par la voiture la plus à droite, d’après les règles
suivantes :

— une voiture se trouvant sur la case la plus à droite de la file sort de la file ;
— une voiture peut avancer d’une case vers la droite si elle arrive sur une case inoccupée ;
— une case libérée par une voiture devient inoccupée ;
— la case la plus à gauche peut devenir occupée ou non, selon le cas considéré.

On suppose avoir écrit en Python la fonction avancer prenant en paramètres une liste de départ,
un booléen indiquant si la case la plus à gauche doit devenir occupée lors de l’étape de simulation,
et renvoyant la liste obtenue par une étape de simulation.
Par exemple, l’application de cette fonction à la liste illustrée par la Figure 2(a) permet d’obtenir
soit la liste illustrée par la Figure 2(b) lorsque l’on considère qu’aucune voiture nouvelle n’est
introduite, soit la liste illustrée par la Figure 2(c) lorsque l’on considère qu’une voiture nouvelle
est introduite.

3



Figure 2 – Étape de simulation

7. Étant donnée A la liste définie à la question 2, que renvoie l’instruction suivante :

>>>avancer(avancer(A, False),True)

8. On considère L une liste et m l’indice d’une case de cette liste (0 ⩽ m < len(L)). On
s’intéresse à une étape partielle où seules les voitures situées sur la case d’indice m ou à
droite de cette case peuvent avancer normalement, les autres voitures ne se déplaçant pas.

Par exemple, la file devient .

Définir en Python la fonction avancer_fin(L, m) qui réalise cette étape partielle de dépla-
cement et renvoie le résultat dans une nouvelle liste sans modifier L.

9. Soient L une liste, b un booléen et m l’indice d’une case inoccupée de cette liste. On
considère une étape partielle où seules les voitures situées à gauche de la case d’indice m
se déplacent, les autres voitures ne se déplacent pas. Le booléen b indique si une nouvelle
voiture est introduite sur la case la plus à gauche.

Par exemple, la file devient lorsque
aucune nouvelle voiture n’est introduite.

Définir en Python la fonction avancer_debut(L, b, m) qui réalise cette étape partielle de
déplacement et renvoie le résultat dans une nouvelle liste sans modifier L.

10. On considère une liste L dont la case d’indice m > 0 est temporairement inaccessible
et bloque l’avancée des voitures. Une voiture située immédiatement à gauche de la case
d’indice m ne peut pas avancer. Les voitures situées sur les cases plus à gauche peuvent
avancer, à moins d’être bloquées par une case occupée, les autres voitures ne se déplacent
pas. Un booléen b indique si une nouvelle voiture est introduite lorsque cela est possible.

Par exemple, la file devient ,lorsque
aucune nouvelle voiture n’est introduite.

Définir en Python la fonction avancer_debut_bloque(L, b, m) qui réalise cette étape par-
tielle de déplacement et renvoie le résultat dans une nouvelle liste.

Correction.

1. On représente une file de longueur n par une liste L de longueur n où chaque élément L[i]
(pour i entre 0 et n − 1) vaut True s’il y a une voiture sur la case d’indice i (i + 1-ième
case) de la file et False s’il n’y en a pas.

4



2. Par exemple :

>>>A=[True,False,True,True,False,False,False,False,False,False,True]

3. Version très concise (mais parfaitement juste) :

1 def occupe(L,i):
2 return L[i]

Version peut-être plus facile à assimiler au départ

1 def occupe(L,i):
2 if L[i]==True: #ici "if L[i]:" suffisait aussi :)
3 return True
4 else:
5 return False

4. Pour chaque case d’une file de longeur n, on a deux possibilités : soit il y a une voiture, soit
il n’y en a pas ; on peut représenter l’ensemble des files de longueur n par l’ensemble des
n-uplets de {0, 1}n où la présence d’une voiture correspond à 1 et l’absence à 0. Le nombre
de files de longueur n est donc égal au nombre d’éléments de {0, 1}n, en l’occurence, 2n.

5. Algorithme de comparaison de deux listes. On part du fait suivant : deux listes L1, L2 sont
égales si, et seulement si, elles sont de même longueur n et que pour tout indice i entre 0 et
n−1, L1[i] et L2[i] sont égaux puis on utilise sa contraposée pour coder notre fonction :

1 def egal(L1,l2):
2 n=len(L1)
3 m=len(L2)
4 if n!=m: # si les tailles sont différentes : False
5 return False
6 else: #si elles sont égales ...
7 for i in range(n):
8 if L1[i]!=L2[i]: # ... mais que deux termes diffèrent : False
9 return False

10 #... et boucle terminée, tous les éléments sont donc égaux terme
à terme : True

11 return True

6. Cette fonction renvoie True ou False ; le type de retour est donc booléen.

7. Pour A=[True,False,True,True,False,False,False,False,False,False,True], on obtient :

5



>>>avancer(avancer(A,False),True)

[True,False,True,False,True,True,False,False,False,False,False]

8. L’idée est d’utiliser la fonction avancer sur la sous-liste des éléments d’indice plus grand
ou égaux à m (L[m:]) et de ne pas toucher à la sous-liste des éléments d’indice entre 0 et
m− 1 (L[:m]) :

1 def avancer_fin(L,m):
2 return L[:m]+avancer(L[m:],False) #False car bien-sûr on ne rajoute

pas de voiture

9. L’idée est essentiellement la même que pour la question précédente : on utilise la fonction
avancer sur la sous-liste des éléments d’indice de 0 à m (L[:m+1]) et on ne touche pas à la
sous-liste des éléments d’indice plus grand ou égal à m+ 1 (L[m+1:]) :

1 def avancer_debut(L,b,m):
2 return avancer(L[:m+1],b)+L[m+1:]

10. L’idée est de déterminer l’indice j de la dernière case vide (strictement) avant celle d’indice
m. Si cet indice j existe, on applique la fonction précedente avancer_debut en j ; sinon, la
liste ne change pas.

1 def avancer_debut_bloque(L,b,m):
2 j=m-1
3 while j>=0 and L[j]: #tant que l'indice j est valide et qu'il y a une

voiture à la case j
4 j=j-1 #on teste avec indice d'avant
5 if j>=0: #si j>=0 c'est que la boucle s'est arrêtée "à cause" du fait

que L[j] vaut False, et donc que la case j est vide
6 return avancer_debut(L,b,j)
7 else: #sinon, pas de case vide entre 0 et m-1
8 return L

6


