Mathématiques supérieures le Lundi 3 Novembre 2024

Correction du DS d’'Informatique n°2

Ce sujet est composé d’un exercice et un probleme. Vous prendrez soin de bien justifier vos calculs.
Veillez a bien respecter I'indentation des programmes Python que vous écrirez sur votre copie.

Exercice 1. Extrait de Centrale 2015

I Quelques fonctions utilitaires

I.A - Donner la valeur des expressions python suivantes :
LA.1) [1, 2, 31 + [4, 5, 6]

LA.2) 2% [1, 2, 3]

LB - FEerire une fonction python smul 4 deux paramétres, un nombre et une liste de nombres, qui multiple
chaque élément de la liste par le nombre et renvoie une nouvelle liste : smul (2, [1, 2, 31) — [2, 4, 6].

ILC - Arithmétigue de listes

1.C.1) Eerire une fonction python veom qui prend en paramétre deux listes de nombres de méme longueur et
qui renvoie une nouvelle liste constituée de la somme terme & terme de ces dewx listes :

vsom([1, 2, 3], [4, 5, 6]) —= [5, 7, 9].

1.C.2) Eerire une fonction python vdif qui prend en paramétre deux listes de nombres de méme longueur et
qui renvoie une nouvelle liste constituée de la différence terme A terme de ces deux listes (la premiére moins la
deuxiéme) : vdif ([1, 2, 31, [4, 5, 6]1) — [-3, -3, -3].

I.A.1) Le + réalise la concaténation entre deux listes :

>>> [1,2,3]1+[4,5,6]
[1,2,3,4,5,6]

ILA.2) L’instruction n*L est équivalente & L+...+L avec n termes L donc 'instruction 2*[1,2,3]
est équivalente & [1,2,3]+[1,2,3] :

>>> 2%[1,2,3]
11525851k, 25 8]

1B

1 def smul(a,L):

2 Res = []

3 for i in range(len(L)):
4 Res.append(a*L[i])
5 return Res

1.C.1)

def vsom(L1,L2):
"tno 11 et L2 sont supposées de méme taille
Res = []
for i in range(len(L1)):
Res.append (L1[i]+L2[i])
return Res

=W N =

o ot

1.C.2)

1 def vdif(L1,L2):
2 """ L1 et L2 sont supposées de méme taille
3 Res = []
4 for i in range(len(L1)):
Res.append(L1[i]-L2[i])
return Res

ou en utilisant les fonctions précédentes (mais on parcourt deux fois
la liste L2 contre une seule fois avec la fonction précédente)

10 def vdif(L1,L2):
11 return vsom(L1l,smul(-1,L2))

Probléme. Mines 2017 (début)

Ce sujet concerne la conception d’un logiciel d’étude de trafic routier. On modélise le déplacement
d’un ensemble de voitures sur des files & sens unique (voir Figure 1). C’est un schéma simple qui
peut permettre de comprendre 'apparition d’embouteillages et de concevoir des solutions pour
fluidifier le trafic.

Le sujet comporte des questions de programmation. Le langage a utiliser est Python.
Notations : soit L une liste,

 on note len(L) sa longueur;
o pour ¢ entier, 0 < ¢ < len(L), élément de la liste d’indice i est noté Li] ;

e pour i et j entiers, 0 < ¢ < j < len(L), L[i : j] est la sous-liste composée des éléments
L, ... L[j —1];
o px L, avec p entier, est la liste obtenue en concaténant p copies de L. Par exemple, 3 * [0]

est la liste [0, 0, 0].

{a) Représentation d'une file de
longueur onze comprenant quatre voitures, situdes

respectivement sur les cases d'indices 0, 2, 3 et 10.
F1GURE 1 - File de circulation

1 - Préliminaires

On considere le cas d’une seule file, illustré par la Figure 1. Une file de longueur n est représentée
par n cases. Une case peut contenir au plus une voiture. Les voitures présentes dans une file
circulent toutes dans la méme direction (sens des indices croissants, désigné par les fleches sur
la Figure 1) et sont indifférenciées.

1. Expliquer comment représenter une file de voitures a ’aide d’une liste de booléens.

On rappelle qu’un booléen est un objet Python admettant deuz valeurs possibles : soit True
soit False, ou True correspond a "Vrai” et False correspond a "Fauz”.

2. Donner une ou plusieurs instructions Python permettant de définir une liste A représentant
la file de voitures illustrée par la Figure 1.

3. Soit L une liste représentant une file de longueur n et i un entier tel que 0 < ¢ < n. Définir
en Python la fonction occupe(L, i) qui renvoie True lorsque la case d’indice i de la file est
occupée par une voiture et False sinon.

4. Combien existe-t-il de files différentes de longueur n ? Justifier votre réponse.

5. Ecrire une fonction egal (L1, L2) retournant un booléen permettant de savoir si deux listes
L1 et L2 sont égales.

6. Préciser le type de retour de cette fonction.

2 - Déplacement de voitures dans la file

On identifie désormais une file de voitures a une liste. On considére le schéma de la Figure 2
représentant un exemple de file. Une étape de simulation pour une file consiste a déplacer les
voitures de la file, a tour de role, en commencant par la voiture la plus a droite, d’apres les regles
suivantes :

— une voiture se trouvant sur la case la plus a droite de la file sort de la file;
— une voiture peut avancer d’une case vers la droite si elle arrive sur une case inoccupée;;
— une case libérée par une voiture devient inoccupée;;

— la case la plus a gauche peut devenir occupée ou non, selon le cas considéré.

On suppose avoir écrit en Python la fonction avancer prenant en parametres une liste de départ,
un booléen indiquant si la case la plus & gauche doit devenir occupée lors de ’étape de simulation,
et renvoyant la liste obtenue par une étape de simulation.

Par exemple, 'application de cette fonction a la liste illustrée par la Figure 2(a) permet d’obtenir
soit la liste illustrée par la Figure 2(b) lorsque l'on considére qu’aucune voiture nouvelle n’est
introduite, soit la liste illustrée par la Figure 2(c) lorsque 'on considére qu’une voiture nouvelle
est introduite.

7.

8.

10.

B B [[[[

{a) Liste initiale A

{b) B = avancer(A, False) {¢) ' = avancer (A, True)

FIGURE 2 — Etape de simulation

Etant donnée A la liste définie & la question 2, que renvoie l'instruction suivante :
>>>avancer (avancer(A, False),True)

On considére L une liste et m l'indice d’une case de cette liste (0 < m < len(L)). On
s’intéresse a une étape partielle ou seules les voitures situées sur la case d’indice m ou a
droite de cette case peuvent avancer normalement, les autres voitures ne se déplagant pas.

-l - » i~ - RN (I~ - -

Par exemple, la file T devient

Définir en Python la fonction avancer fin(L, m) qui réalise cette étape partielle de dépla-
cement et renvoie le résultat dans une nouvelle liste sans modifier L.

. Soient L une liste, b un booléen et m l'indice d’une case inoccupée de cette liste. On

considere une étape partielle ou seules les voitures situées a gauche de la case d’indice m
se déplacent, les autres voitures ne se déplacent pas. Le booléen b indique si une nouvelle
voiture est introduite sur la case la plus a gauche.

[E1 BIE3EY S | |

Par exemple, la file lorsque

aucune nouvelle voiture n’est introduite.

Définir en Python la fonction avancer debut(L, b, m) qui réalise cette étape partielle de
déplacement et renvoie le résultat dans une nouvelle liste sans modifier L.

On considere une liste L dont la case d’indice m > 0 est temporairement inaccessible
et bloque I'avancée des voitures. Une voiture située immédiatement a gauche de la case
d’indice m ne peut pas avancer. Les voitures situées sur les cases plus a gauche peuvent
avancer, a moins d’étre bloquées par une case occupée, les autres voitures ne se déplacent
pas. Un booléen b indique si une nouvelle voiture est introduite lorsque cela est possible.
EEY BEY | BEY [| [EXEN0EY | EOEN [|
Par exemple, la file m devient m ,JJorsque
aucune nouvelle voiture n’est introduite.

Définir en Python la fonction avancer debut bloque(L, b, m) qui réalise cette étape par-
tielle de déplacement et renvoie le résultat dans une nouvelle liste.

On représente une file de longueur n par une liste L de longueur n ou chaque élément L[i]
(pour 7 entre 0 et n — 1) vaut True 8’il y a une voiture sur la case d’indice 4 (i + 1-iéme
case) de la file et False s’il n’y en a pas.

2. Par exemple :

[>>>A=[True,False,True,True,False,False,False,False,False,False,True]]

3. Version treés concise (mais parfaitement juste) :

1 def occupe(L,i):
2 return L[i]

Version peut-étre plus facile a assimiler au départ

e w

1 def occupe(L,i):

2 if L[i]==True: #ici "if L[i]:" suffisait aussi :)
) return True
4 else:

5 return False

\, J

4. Pour chaque case d’une file de longeur n, on a deux possibilités : soit il y a une voiture, soit
il n’y en a pas; on peut représenter ’ensemble des files de longueur n par I’ensemble des
n-uplets de {0, 1}" ou la présence d’une voiture correspond a 1 et ’absence & 0. Le nombre
de files de longueur n est donc égal au nombre d’éléments de {0,1}", en 'occurence, 2.

5. Algorithme de comparaison de deux listes. On part du fait suivant : deux listes L1, L2 sont
égales si, et seulement si, elles sont de méme longueur n et que pour tout indice i entre 0 et
n—1, L1[i] et L2[i] sont égaux puis on utilise sa contraposée pour coder notre fonction :

1 def egal(L1l,12):

2 n=len(L1)

3 m=len(L2)

4 if nl=m: # si les tailles sont différentes : False

5 return False

6 else: #si elles sont égales ...

7 for i in range(n):

8 if L1[i]!'=L2[i]: # ... mais que deux termes different : False

9 return False

10 #... et boucle terminée, tous les éléments sont donc égaux terme
a terme : True

11 return True

6. Cette fonction renvoie True ou False; le type de retour est donc booléen.

7. Pour A=[True,False,True,True,False,False,False,False,False,False,True], on obtient :

8.

10.

>>>agvancer(avancer(A,False),True)

[True,False,True,False,True,True,False,False,False,False,False]

L’idée est d’utiliser la fonction avancer sur la sous-liste des éléments d’indice plus grand
ou égaux & m (L[m:]) et de ne pas toucher & la sous-liste des éléments d’indice entre 0 et
m—1(L[:m]) :

1 def avancer fin(L,m):
2 return L[:m]+avancer(L[m:],False) #False car bien-sir on ne rajoute
pas de voiture

L’idée est essentiellement la méme que pour la question précédente : on utilise la fonction
avancer sur la sous-liste des éléments d’indice de 0 & m (L[:m+1]) et on ne touche pas a la
sous-liste des éléments d’indice plus grand ou égal & m + 1 (L[m+1:]) :

1 def avancer debut(L,b,m):
2 return avancer(L[:m+1],b)+L[m+1:]

L’idée est de déterminer I'indice j de la derniére case vide (strictement) avant celle d’indice
m. Si cet indice j existe, on applique la fonction précedente avancer debut en j; sinon, la
liste ne change pas.

1 def avancer debut bloque(L,b,m):

2 j=m-1

3 while j>=0 and L[j]: #tant que l'indice j est valide et qu'il y a une
voiture a la case j

4 j=j-1 #on teste avec indice d'avant

5 if j>=0: #si j>=0 c'est que la boucle s'est arrétée "a cause" du fait
que L[j] vaut False, et donc que la case j est vide

6 return avancer debut(L,b,j)

7 else: #sinon, pas de case vide entre 0 et m-1

8 return L

