ClassExo
Exercices de la catégorie Séries de fonctions
0
 
Navigation : MathématiquesAnalyseSuites, sériesSuites et séries de fonctions ⇐ Séries de fonctions
Séries de fonctions : liste des exercices
Exercice #346
Exercice de base
Détails de l'exercice #346
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Étudier les convergences simple, uniforme et normale sur $\mathbb{R}_+$ de la série de fonctions $\displaystyle \sum_{n \geqslant 1}f_n$ telle que, pour $n \in \mathbb{N}^*$ et $t \in \mathbb{R}_+$ : \[ f_n(t) = \frac{(-1)^n}{n+t}. \]
Exercice #348
Exercice de base
Détails de l'exercice #348
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la série de fonctions $\displaystyle \sum_{n \geqslant 1} f_n$ telle que, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$ : \[ f_n(x) = \frac{1}{n+n^2x}. \]
  1. Montrer que $\displaystyle \sum_{n \geqslant 1}f_n$ converge simplement sur $\mathbb{R}_+^*$. Est-ce toujours vrai sur $\mathbb{R}_+$ ?
  2. Étudier la convergence normale et uniforme de $\displaystyle \sum_{n \geqslant 1} f_n$ sur $[a,+\infty[$ avec $a> 0$ puis sur $\mathbb{R}_+^*$.
Exercice #347
Difficulté de niveau 1
Détails de l'exercice #347
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Soit $(\alpha_n)_{n \in \mathbb{N}}$ une suite décroissante à valeurs dans $\mathbb{R}_+$. On considère la série de fonctions $\displaystyle \sum f_n$ telle que, pour $n \in \mathbb{N}$ et $t \in [0,1]$ : \[ f_n(t) = \alpha_nt^n(1-t). \]
  1. Montrer que $\sum f_n$ converge simplement sur $[0,1]$.
  2. Déterminer une condition nécessaire et suffisante pour que $\sum f_n$ converge normalement sur $[0,1]$.
  3. Montrer que $\sum f_n$ converge uniformément sur $[0,1]$ si, et seulement si, $(\alpha_n)_{n \in \mathbb{N}}$ converge vers $0$.
Exercice #349
Exercice de base
Détails de l'exercice #349
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la fonction $\displaystyle f : t \mapsto \sum_{n=1}^{+\infty}\frac{(-1)^n}{\ln(nt)}$.
  1. Montrer que $f$ est définie et continue sur $]1,+\infty[$.
  2. Déterminer les limites de $f$ en $+\infty$ et en $1$.
  3. Montrer que $f$ est de classe $C^1$ sur $]1,+\infty[$.
  4. Dresser le tableau de variations de $f$.

Exercice #351
Exercice de base
Détails de l'exercice #351
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la fonction $\displaystyle f : x \mapsto \sum_{n=0}^{+\infty}\frac{(-1)^n}{(x+n).n!}$.
  1. Montrer que $f$ est définie et de classe $C^1$ sur $]0,+\infty[$.
  2. Dresser le tableau des variations de $f$ sur $]0,+\infty[$ en précisant les limites de $f$ aux bornes de cet intervalle.
  3. Montrer que, pour tout $x \in ]0,+\infty[$ : \[ xf(x)-f(x+1)=\frac{1}{e}, \]
  4. En déduire des équivalents simples de $f$ en $0^+$ et en $+\infty$.
Exercice #350
Difficulté de niveau 1
Détails de l'exercice #350
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la fonction $\displaystyle f : x \mapsto \sum_{n=1}^{+\infty}\frac{x^n\sin(nx)}{n}$.
  1. Montrer que $f$ est définie et de classe $C^1$ sur $]-1,1[$.
  2. Montrer que, pour tout $x \in ]-1,1[$ : \[ f(x)=\text{arctan}\left(\frac{x\sin(x)}{1-x\cos(x)}\right). \]
Exercice #353
Difficulté de niveau 1
Détails de l'exercice #353
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la fonction $\displaystyle f : x \mapsto \sum_{n=0}^{+\infty}e^{-x\sqrt{n}}$.
  1. Montrer que $f$ est définie et de classe $C^{\infty}$ sur $]0,+\infty[$.
  2. Dresser le tableau des variations de $f$ sur $]0,+\infty[$ en précisant la limite de $f$ en $+\infty$.
  3. Grâce à une comparaison série/intégrale, déterminer un équivalent de $f$ en $0^+$.
Exercice #354
Difficulté de niveau 1
Détails de l'exercice #354
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
On considère la fonction $\displaystyle f : x \mapsto \sum_{n=0}^{+\infty}\frac{1}{x(x+1)...(x+n)}$.
  1. Montrer que $f$ est définie et continue sur $]0,+\infty[$ puis déterminer la limite de $f$ en $+\infty$.
  2. Pour $x \in ]0,+\infty[$, déterminer une relation entre $f(x+1)$ et $f(x)$ puis en déduire des équivalents simples de $f$ en $+\infty$ et $0^+$.
Exercice #545 Oral concours CCinP
Difficulté de niveau 1
Détails de l'exercice #545
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Mots clés associés :
2023 CCinP Oral
Source : BEOS #7541 Oral CCinP 2023
Énoncé
Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $\displaystyle f_n(x) = \frac{2x}{x^2 + n^2}$.
  1. Justifier la convergence simple sur $\mathbb{R}$ de la série de fonctions $\displaystyle \sum_{n\geqslant 1}f_n$.
    On note $S$ la somme de cette série de fonctions sur $\mathbb{R}$ :\[ S:x \mapsto \sum_{n=1}^{+\infty}f_n(x). \]
  2. Justifier la continuité de $S$ sur $\mathbb{R}$.
  3. Montrer que $\displaystyle\lim_{x \rightarrow +\infty} S(x) = \pi$.
Indications
  1. Déterminer un équivalent simple de $|f_n(x)|$ pour $x \neq 0$.
  2. Étudier la convergence normale sur $[-a,a]$ pour tout $a> 0$.
  3. Procéder par comparaison série/intégrale.
Correction
  1. CVS sur $\mathbb{R}$ :
    Soit $x \in \mathbb{R}$. Étudions la nature de $\sum_{n \geqslant 1} f_n(x)$.
    Si $x = 0$, $f_n(0)=0$ est le terme général d'une série convergente.
    Si $x \neq 0$,\[ |f_n(x)| \underset{n \rightarrow +\infty}{\sim} \frac{2|x|}{n^2} \]Or, $\frac{1}{n^2}$ est le terme général d'une série convergente, donc, $\frac{2|x|}{n^2}$ l'est aussi et ainsi, par comparaison, la série numérique $\sum_{n \geqslant 1} f_n(x)$ converge absolument et donc converge.
    Par suite, la série de fonctions $\sum_{n \geqslant 1} f_n$ converge simplement sur $\mathbb{R}$.
    (Et ainsi, $S$ est bien définie sur $\mathbb{R}$.)
  2. Vérifions les hypothèses du théorème de continuité des sommes de séries de fonctions.
    • Pour tout $n \in \mathbb{N}$, $f_n$ est continue sur $\mathbb{R}$ comme quotient de fonctions continue sur $\mathbb{R}$ (car polynomiale) dont le dénominateur ne s'annule pas sur $\mathbb{R}$.
    • Montrons la convergence uniforme (au moins) sur tout segment de $\mathbb{R}$. Soit $a \in \mathbb{R}_+^*$.
      CVN sur $[-a,a]$ :
      Soit $n \in \mathbb{N}^*$. Pour tout $x \in [-a,a]$, on a, comme $0\leqslant |x| \leqslant a$ : \[ |f_n(x)|=\frac{2|x|}{x^2+n^2}\leqslant \frac{2a}{n^2} \] Donc $f_n$ est bornée sur $[-a,a]$ et sur $[-a,a]$, $\|f_n\|_{\infty}\leqslant \frac{2a}{n^2}$ qui est le terme général d'une série convergente (comme dans la question 1).
      Ainsi, par comparaison, $\sum_{n \geqslant 1} \|f_n\|_{\infty}$ converge i.e. $\sum_{n \geqslant 1} f_n$ converge normalement sur $[-a,a]$, et ce, pour tout réel $a > 0$.
      Comme tout segment de $\mathbb{R}$ est inclus dans un intervalle de la forme $[-a,a]$ avec $a> 0$, la série de fonctions $\sum_{n \geqslant 1} f_n$ converge normalement sur tout segment de $\mathbb{R}$ et donc, la série de fonctions $\sum_{n \geqslant 1} f_n$ converge uniformément sur tout segment de $\mathbb{R}$ car "CVN implique CVU".
    Ainsi, les hypothèses étant vérifiées, d'après le théorème de continuité des sommes de séries de fonctions, la fonction $S$ est continue sur $\mathbb{R}$.

    Remarque : on aurait pu tenter la CVN sur $\mathbb{R}$ mais ça n'aurait pas fonctionné; en effet, on peut montrer que sur $\mathbb{R}$, $\|f_n\|_{\infty}=\frac{2}{n}$ (atteint en $x=n$) qui est le terme général d'une série divergente.
    Et il n'y a pas CVU sur $\mathbb{R}$ non plus : en posant $x_n=n$, on vérifie que $\|R_n\|_{\infty}\geqslant R_n(x_n) \geqslant \frac{2}{5}$ (en restreignant la somme de $n+1$ à $2n$).
  3. D'après la remarque précédente, on ne peut pas appliquer le théorème d'interversion limite/somme (théorème de double limite pour les séries de fonctions).
    Il faut trouver une autre façon de faire : par exemple, une comparaison série/intégrale (le terme général fait penser à quelque chose ressemblant à la dérivée de arctangente).
    Fixons un réel $x > 0$. On pose $g:t\mapsto \frac{2x}{x^2+t^2}$. Alors $g$ est positive, continue et décroissante sur $\mathbb{R}_+$ donc, par comparaison série/intégrale :
    • $\sum_{n \geqslant 1} f_n(x)$ et $\int_0^{+\infty}g(t) \text{d}t$ sont de même nature et donc convergentes car $\sum_{n \geqslant 1} f_n(x)$ converge (question 1).
    • Et de plus, on a : \[ \int_1^{+\infty}g(t) \text{d}t\leqslant S(x)=\sum_{n =1}^{+\infty} f_n(x) \leqslant \int_0^{+\infty}g(t) \text{d}t \]
    Or, on remarque que, pour $t \in \mathbb{R}_+$,\[ g(t)=\frac{2x}{x^2+t^2}=2\frac{\frac{1}{x}}{1+\left(\frac{t}{x}\right)^2} = \frac{\text{d}}{\text{d}t}2\textrm{arctan}\left(\frac{t}{x}\right), \]donc :\[ \pi-2\textrm{arctan}\left(\frac{1}{x}\right)=\left[2\textrm{arctan}\left(\frac{t}{x}\right)\right]_1^{+\infty}\leqslant S(x) \leqslant \left[2\textrm{arctan}\left(\frac{t}{x}\right)\right]_0^{+\infty} = \pi \]Et, ainsi, comme $\textrm{arctan}\left(\frac{1}{x}\right) \xrightarrow[x \rightarrow +\infty]{}0$, d'après le théorème des gendarmes, on obtient :\[ \lim_{x \rightarrow +\infty}S(x)=\pi. \]Remarque : Avec ce qu'on vient de calculer, on obtient une nouvelle façon de prouver qu'il n'y a pas CVU sur $\mathbb{R}$; en effet, par l'absurde, si $\sum_{n \geqslant 1} f_n$ CVU sur $\mathbb{R}$, comme, pour tout $n \in \mathbb{N}^*$, $f_n(x) \xrightarrow[x \rightarrow +\infty]{}0$, d'après le théorème d'interversion limite/somme, on a $\pi=\lim_{x \rightarrow +\infty}S(x)=0$. Contradiction !
Exercice #601
Difficulté de niveau 1
Détails de l'exercice #601
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Montrer que la fonction $\displaystyle S:x \mapsto \sum_{n=0}^{+\infty}\frac{x^n}{1+x^{n}}$ est de classe $C^1$ sur son domaine de définition.
Indications
Étudier la convergence simple de la série de fonctions associée pour déterminer le domaine de définition, puis obtenir la convergence uniforme sur tout segment de ce domaine via la convergence normale sur des intervalles appropriés.
Correction
Pour $n \in \mathbb{N}$, on note $f_n:x \mapsto \frac{x^n}{1+x^n}$. Pour $n$ entier impair, $f_n$ n'est pas définie en $-1$ donc le domaine de $S$ est inclus dans $\mathbb{R}\smallsetminus\{-1\}$.

CVS sur $\mathbb{R} \smallsetminus\{-1\}$ : Soit $x \in \mathbb{R} \smallsetminus\{-1\}$. Étudions la nature de $\sum f_n(x)$.
  • Si $|x|< 1$, on a :\[ |f_n(x)|=\frac{|x|^n}{1+x^n}\underset{\rightarrow+\infty}{\sim}|x|^n \]Or $|x|^n$ est le terme général d'une série convergente donc, par comparaison, $\sum f_n(x)$ converge absolument et donc converge.
  • Si $|x|> 1$, comme $|x|^n \xrightarrow[n \rightarrow +\infty]{} +\infty$, on a \[ f_n(x) = \frac{1}{1+\frac{1}{x^n}} \xrightarrow[n \rightarrow +\infty]{} 1 \neq 0 \] donc $\sum f_n(x)$ diverge grossièrement.
  • Si $x = 1$, $f_n(x)=1$ donc $\sum f_n(x)$ diverge grossièrement.

Il en résulte que $\sum f_n(x)$ converge simplement sur $]-1,1[$ au plus donc le domaine de $S$ est $]-1,1[$.


Montrons que $S$ est de classe $C^1$ sur $]-1,1[$.
  • Pour tout $n \in \mathbb{N}$, $f_n$ est de classe $C^1$ sur $]-1,1[$ comme quotient de fonctions polynomiales dont le dénominateur ne s'annule pas. De plus, pour tout $x \in ]-1,1[$, on a : \[ f'_n(x)=\frac{nx^{n-1}}{(1+x^n)^2}. \]
  • On a $\sum f_n(x)$ converge simplement sur $]-1,1[$ d'après ce qui précède.
  • Étudions la convergence uniforme de $\sum f'_n$ (au moins) sur tout segment de $]-1,1[$.

    Soit $a \in ]0,1[$.
    CVN sur $[-a,a]$ de $\sum f'_n$ : Soit $n \in \mathbb{N}$. Pour tout $x \in [-a,a]$, on a : \[ |f'_n(x)|=\frac{n|x|^{n-1}}{(1+x^n)^2} \leqslant \frac{na^{n-1}}{(1-a^n)^2} \] Par suite, $f'_n$ est bornée sur $[-a,a]$ et on a, sur $[-a,a]$ : \[ \|f'_n\|_{\infty}\leqslant \frac{na^{n-1}}{(1-a^n)^2}\underset{\rightarrow+\infty}{\sim}na^{n-1} \] Or, comme $a \in ]0,1[$, $\sum na^{n-1}$ converge (en utilisant la règle de D'Alembert ou par comparaison à une série de Riemann convergente par exemple), donc, par comparaison, $\sum \|f'_n\|_{\infty}$ converge i.e. $\sum f'_n$ converge normalement sur $[-a,a]$.

    Ainsi, pour tout $a \in ]0,1[$, $\sum f'_n$ converge normalement et donc uniformément sur $[-a,a]$. Or, tout segment de $]-1,1[$ est inclus dans un intervalle de la forme $[-a,a]$, donc $\sum f'_n$ converge uniformément sur tout segment de $]-1,1[$.


Il en résulte que, d'après le théorème d'interversion dérivation/somme :
  • la série $\sum f_n$ converge uniformément sur tout segment de $]-1,1[$;
  • la fonction $S$ est de classe $C^1$ sur $]-1,1[$ et on a, pour tout $x \in ]-1,1[$ : \[ S'(x)=\frac{\text{d}}{\text{d}x}\sum_{n=0}^{+\infty}\frac{x^n}{1+x^n}=\sum_{n=0}^{+\infty}\frac{\text{d}}{\text{d}x}\frac{x^n}{1+x^n} = \sum_{n=1}^{+\infty}\frac{nx^{n-1}}{(1+x^n)^2}. \]
Exercice #352
Difficulté de niveau 2
Détails de l'exercice #352
Exercice enregistré par M. Arnt
Niveaux :
En Mathématiques : Bac+2.
Énoncé
Montrer que la fonction $\displaystyle \eta: s \mapsto \sum_{n=1}^{+\infty}\frac{(-1)^n}{n^s}$ est définie et de classe $C^{\infty}$ sur $]0,+\infty[$.
Classexo 2026 || Contacts || Conseils d'utilisation